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INTRODUCTION
This document describes research performed for a Ph.D. in
electrical engineering at Iowa State University, in the

computer systems area. The malin accomplishments are:

1. The invention of a new structure, which can
be used as an interconnection topology for
multi-microcomputer systems, and possibly

for other applications.

2. The design of a microprocessor-based element
which can be used in such multi-microcomputer

structures, with LSI and VLSI technology.

3. The completion of a series of experiments
with a multi-tasking software system, which

provides some insight into the design and

e
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In the past decade, the interconnection of large numbers
of microprocessors to form a multi-microcomputer has become an
increasingly attractive prospect. Several authors have
described topologies which would permit a set of nodes,
(computers or computer busses) to be linked together by means
of communication channels, intc a multiple instruction stream,
multiple data stream, (MIMD) architecture

(1,8-10,12,13,15,20).



The key is to find an efficient way to utilize identical,
mass-produced microcomputers in a large system. Such a
computer could solve many separate tasks simultaneously,
realizing an almost linear increase in processing power as the
number of nodes increases. If microprocessors can be used in
this fashion, then arbitrarily large and powerful multi-
microcomputers could be constructed.

Such machines could be used in conventional
multiprogramming environments, to replace expensive mainframe
computers in general-purpose applications. However, an even
greater potential may exist in special applications which have
generally required multi-million dollar supercomputers.
Current supercomputers are not only expensive, they are also
very heavily utilized. Many applications are not being
pursued because the necessary computer time is not obtainable
at a reasonable cost -- the available resources being reserved
for high priority areas such as fusion research (3,7,9,17,19).

Most such applications involve complex systems of
equations which can be handled by parallel/pipelined machines
such as the Cray-I or CDC 205. However, in many cases it may
be possible to recast such problems so that they can be broken
down into a collection of tasks, which can be executed in
parallel by a collection of cooperating uniprocessors.

Provided that suitable control and communication
mechanisms can be devised, 1t seems likely that an MIMD

computer, based on microcomputers, could perform such



computations. As each processcr completed its assigned task,
its results would be communicated to neighboring processors,
so that all the results could be combined into a global
solution. If such a computer could be implemented, then many
costly, computationally intensive problems would be within the
reach of systems costing one~tenth to one-hundredth as much as
current supercomputers. The availability of large amounts of
inexpensive computational power would be extremely beneficial
in many research areas and applications, such as the

following:

. Seismology.

Cosmology.

Aerodynamics.

Meteorology.
Nuclear physics.

Signal processing.

~N O e W NN

Tomography.

pattern analysis.

o o

Artificial intelligence.

The global weather problem is a classic example. One may

hundreds or thousands of sectors, with a separate
microcomputer assigned to process the data acquired from each.
A global solution of such problems would require the sharing
of information across sector boundaries, so that interactions

between sectors could be resolved -- for example, the effect



of a low-pressure area in Montana on wind velocity in
Minnesota. Analysis of such boundary conditions requires
communication facilities, which would be provided by the
interconnection structure of the multi-microcomputér topology.

If such an architecture is to be used in this type of
problem solving, then better performance could probably be
obtained if the interconnection structure mags into the nature
of the problem. For instance, Illiac IV was a two dimensional
processor array, well-suited for the sclution of matrix
problems. Perhaps such a two dimensional structure would be
appropriate for the weather problem, or other surface effects,
while a one dimensional array, (chain) would be more efficient
in spectrum analysis, and a three dimensional structure would
be applicable to large spatial problems, such as those found
in nuclear physics and cosmology.

In all cases, it is assumed that a well-designed
microcomputer could be replicated and interconnected in
different structures to fit various problems. In this way, a
mass-produced microcomputer could drastically reduce the cost
of computations, while increasing throughput. If limiting the
architecture to one type of processor resulted in some
processor-dependent inefficiencies, then more processors could
be added to compensate, without a major redesign of the
system. If regular structures proved inappropriate for some
algorithms, then more processors could be added at specific

critical areas, to form a structure which maps into the
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problem =-- again, using the same basic processor.

However, other computationally intensive problems, or
applications requiring many special functions, could use
structures of special purpose processors. Such microcomputers
would probably be more expensive than a common, general
purpose design, but many applications would justify the extra
cost as a tradeoff for increased performance.

The remainder of this paper will include a short overview
of multi-microcomputer systems, followed by three main
sections. The first section will describe the Geode
interconnection topology, which permits wvariations in
dimensionality and processor concentration. The second
section will present a structural element which can be used to
construct multi-microcomputer systems like Geode, X-tree,
hypercubes, trees, stars and so forth, using LSI or VLSI
technology. Finally, the third main section will present a
multi-tasking software package, which seems generally
applicable to multi-microcomputer systems. This section will

also discuss some experimental results obtained with the

multi-tasking programs.



TECHNOLOGICAL OVERVIEW

This section is intended to provide an overview of
multiple microcomputer systems, rather than an exhaustive
review. Therefore, several worthy proposals or
implementations will be discussed only in passing, or not at
all. Many good reviews have been published, and the
interested reader is urged to consult the bibliography at the
end of this paper. The proposals and systems described here
are Illiac IV (3), X-tree (8), Cm* (12), and the "Pruned
Spanning-bus Hypercube," or PSBH, (20). Collectively, these
four cover most of the general ideas behind multi-
microcomputer systems. )

Illiac IV

Illiac IV was chosen because it was one of the first
computers designed to use multiple identical processing
elements, organized into a physical structure which maps into
the logical structure of certain problems, l.e. Ailscrete
elements. Also, Illiac IV was actually built and cperated --
vielding valuable insights into the nature of large
multiprocessor systems.

The Illiac IV structure was a square array of 64
elements, as shown in Figure 1. As originally proposed, it
would have been implemented with four 64-node arrays organized
into a 16 by 16 structure; however, only one 8 by 8 array was
actually built. The edge~links shown in Figure 1 were

actually interconnected in a wrap-around fashion.



Figure 1. 1Illiac IV Structure

Illiac IV differs from most proposed multi-~-microcomputer
structures in that its processing elements, (PEs) were
instructions. In a given instruction cycle, a PE either
executes the instruction on its local data, or it remains
idle. This is frequently described as a single instruction

stream, multiple data stream, (SIMD} architecture.



In contrast, multi-microcomputers would likely be
implemented as MIMD architectures. This could permit greater
concurrency than an SIMD arrangement, since each element would
operate independently, and would not need to enter idle states
while other processors executed special functions.

However, an MIMD array processor would probably be more
complex than a corresponding SIMD machine, for several
reasons. Obviously, a separate controller would be needed for
each processor. The need for a sophisticated control and
communication mechanism for the entire structure would also
introduce many additional problems.

On the other hand, an MIMD machine might have advantages
in addition to greater concurrency. Greater flexibility would
be one likely characteristic. MIMD systems would allow a set
of related tacks to execute in parallel on a subset of the
available processors, while independent tasks or other
collections of related tasks were handled by other elements.
Thus, an MIMD computer could be very useful in general purpose
timesharing, batch and multi-tasking environments, giving it a
greater potential for utilization, in a high-level sense.

An MIMD machine should also be scomewhat cheaper to
implement than an equivalent SIMD computer, using modern VLSI
technology. This factor is related to flexibility and the
potential for general purpose utilization. The fixed
structure of an SIMD computer might limit its useful PE

configurations. An MIMD element could be used alone, or in
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small collections, or in many different configurations,
because each would be an independent computer. This kind of
flexibility could lead to much greater production volumes than
for SIMD elements, resulting in reduced costs to users.

Finally, the increased complexity of the MIMD approach is
not the obstacle it was in the 1960s. VLSI circuits are now
being fabricated with over 100,000 transistors on a single
die. Circuits with over one million elements may be practical
by 1985, allowing the implementation of a 64-bit processor, a
significant amount of local memory or cache, and a
communication structure on a single integrated circuit.

X-tree

Most recent proposals for new computers, both
uniprocessors and multiprocessors, seek to take advantage of
the improvements in circuit speed and complexity offered by
VLSI technology. X-tree is one such proposal which has drawn

1z intersest, due to the combinartion of VLST nodes

into a tree-like structure. Figure 2 shows a l5-element X-
tree.

The X-tree proposal calls for nodes comprised of a main
processor with a collection of specialized communication
processors on a shared bus, tc be interconnected by means of
8-bit bidirectional communication links. The main processor
would handle computation while the communicaticn gprocessors

handled network functions like gueueing and routing.

One X=-tree application would have users or devices
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associated with the leaf nodes, while the higher level nodes
handled interaction between leaf node processes, as with
shared data base operations. The unused links at each leaf
node could then be used for I/0 interfaces to peripherals such
as terminals or disks. 1In this way, X-tree structures could
be configured for operation in general purpose timesharing
environments, oxr as special purpose backend processors,

possibly handling relational database operations.

Figure 2. X-tree witn 15 Elements
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Pruned Spanning-bus Hypercube

The Pruned Spanning-bus Hypercube proposal, as depicted
in Figure 3, has much in common with X-tree, in that VLSI
microcomputers would share busses, and be interconnected to
form regular structures. However, the PSBH elements would all
be identical, with computation and communication tasks
distributed uniformly among the nodes. The shared busses
would be the only communication media present in the system,
so specialized communication processors or interfaces would
not be required. Thus, a typical PSBH structure could be
constructed using identical VLSI elements, each with two or

more bidirectional communication ports.

Figure 3. Pruned Spanning-bus Hypercube
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Cm*

Cm* is another design which has actually been in
operation for some time. Cm* uses a hierarchy of busses and
memories to interconnect conventional LSI-11 and PDP-11
computers, using memory mapping techniques. Experiments with
this system have shown that algorithms can be executed as
parallel tasks on an MIMD machine, with an almost linear
speedup as nodes are added.

Cm* has also demonstrated the value of the principle of
locality to the efficient execution of cooperating tasks.
Simply stated, locality in this context means that tasks which
are related should be located in clustered groups of nodes, so
that communication delays will have a minimal impact on the
speed of computation.

However, Cm* uses several different types of bus
interface and memory mapping units, so it probably would not
be cost-effective when compared to X-tree, PSBH and other

proposed structures which are more regular, and which call for

Not too long ago, approaches like X-tree, Cm* and PSBH
would have probably been thought foolish, because the doctrine
of economy of scale would have dictated larger computers
instead of more computers. That is, until fairly recently, it
was more cost-effective to make or buy one large computer

instead of several smaller ones. However, such a philosophy



13

may now have been replaced bf the principle of "economy of
volume”. That is, computers implemented with many identical
VLSI microcomputers are more cost-effective than computers
built with high-speed gate-level integrated circuits, or with
many diverse VLSI units.

Eventually, a limit in circuit size and density may be
reached, so that VLSI circuits larger than a maximum size
would not be cost-effective. The limits could be related to
problems with decreasing yield, lower reliability, higher
oﬁerating temperature, or simply a limit in complexity which
makes circuits of too large a size inconvenient to design.
Limits of this type are now being encountered with large
uniprocessors. These factors should be enough to suggest that
multi-microcomputer systems, like those described above, have
considerable potential in applications which require large
amounts of computing power.

The structures of computing elements proposed so far take
two forms -- bus-oriented and link-oriented. Broadcast
systems are similar to bus-oriented systems, but proposals for
broadcast-oriented multi-microcomputer systems have been
limited to local data networks. For present purposes, bus and
broadcast systems will be considered essentially identical.

Of the three MIMD structures described above, all are
bus-oriented, in that all processors are connected to a shared
bus, at least within each node. 1In the case of X-tree, the

bus is not used for extranodal communication -- with 8-bit
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bidirectional links suggested for that function. Thus, X-tree
seems more like a network than a multiprocessor, with the
distinction less clear in the cases of PSBH and Cm¥*.

When information is transferred frocm one place to another
in a computer system, it is actually being transferred from
one area of memory to another, regardless of the intervening
mechanisms or media. The information may be moved a word at a
time, by means of random-access memory operations; however, it
may also be organized into buffers, packets or messages, and
transferred by means of communication channels in bit-oriented
formats.

In memory systems, we think of transfers involving a
certain number of address, data and control signals, which are
used in each operating cycle. 1In the case of communication
links, we usually think of a conductor by which information is
transmitted and received, with address, data and control
information imbedded in messages or packets, instead of being
expressed as separate signals. In either case, the message is
placed in a communication channel, along with enough
information to describe the transfex =-- perhaps its source,
destination, and the number of words to be moved.

For example, let us consider a 32~bit computer connected
to a bus with 32 data lines, 32 address lines, and ten control
lines for bus and memory access. The bus requires 74
conductors, which must all pvarticipate in the transfer of 32

bits of information in a single cycle. Thus, a transfier of
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two memory words would require the activation of 148 signals,
while a 256-word transfer would need 18,944 signals.

Let us assume that the same 32-bit computer is also
connected to a high-speed serial communication link, which has
the same bandwidth, in bits per second, as the bus. In other
words, the 1link could transfer 32 message bits in the time
required for a single bus operation. The link would regquire a
protocol and a message format to control the transfers; so,
let us assume that 100 bits would suffice for routing and flow
control fields. Then, the transfer of two memory words would
require 164 signals, compared to only 148 for the bus, and the
message would require over 2.5 times as long to transmit.
However, a 256-word transfer would be far more efficient,
requiring only 8,292 communication signals, and about 1Y% more
time.

This example illustrates that memory bus implementations
are more efficient for short transfers, while communication
links are preferable for long messages. The tradeoffs are
actually more complicated, both in cost and in speed. For
example, it may be inappropriate to assume that a
communication link could have 32 times the clock rate of a bus
implemented with the same basic technology. However, the main
point is that one approach is not inherently superior. The
choice depends on the application, which determines the
required communication bandwidth. Again, this suggests that

multi-microcomputer structures should be designed to suit
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particular applications, or ranges of applications, if the
structures already propcsed are unsuitable.

As mentioned above, communication in both bus- and link-
oriented systems is kasically a matter of moving information
from one memory area to another. The information content of a
message can be separated from the physical operations involved
in a transfer. Therefore, the data structures used in the
memories may be the same, regardless of whether communication
links or direct transfers are involved. This is a desirable
characteristic, since it permits systems to be implemented in
a modular fashion.

One logical communication technigque, useful for both bus-
and link-oriented systems, is to set up a queuing structure in
memory for each process or processor. A process or task
consists of a code segment, which performs a series of
cperations on an input data segment, producing an output data
segment. Therefore, it would seem natural to provide an input
gqueue and an output queue for each processor. If more than
one task executed on a given processor, then multiple gueueing
structures could be organized.

Then, communication in a multi-microcomputer system can
be reduced to a set of processes, and a set of queuing
operations, which represent the input and output functions of
the processes. The processes could be said to be in
communication when the ocutput set of one intersects the input

set of another. For example, a pipelined system would consist



TSI ETEAITOR FIRN N R mam—— s —mSm o

17

of a chain of processors, linked by queues. The input gqueue
of each element would be the output queue of its predecessor
in the chain. Organizations with greater parallelism would
involve proccessors linked by more complicated, parallel
gueueing structures.

So, the difference between bus- and link-oriented systems
can be regarded as purely physical. The operations and data
structures may be the same, but link~oriented systems have
mechanisms which carry cut data transfers, through some
intervening medium, from the address space of one bus to
another. The bus-oriented system merely has an intersection
between two or more address spaces, with direct transfers.

In either case, some type of partition separates local
memory areas from one another. The link-oriented system uses
communication controllers, coaxial cables, and so forth. The
bus-oriented system uses three-state transceivers and
arbitration leogic to determine which processors are connected
to a given bus at a given time. The effect is to isolate
processors from one another to avoid memory contention, for
the purpose of efficient computation. Contention is a problem
only when the processes are in communication -- when a
processor or some intervening device attempts to access a
memory at the same time as another processor, delaying one of
them while the other completes its operation.

This is where the principle of locality plays an

important role. If a multi-microcomputer is designed to
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perform some large computation, then that computation will
execute faster if its processors spend most of their time
performing operations in their local memory areas. Accesses
outside the local area imply that communication is taking
place. If processors spend most of their time communicating,
then they will have few cycles available for computation. 1In
other words, if a multi-microcomputer system is to replace a
large uniprocessor, then the multi-microcomputer system will
be much more effective if its tasks are not communication
bound.

Any factor which tends to increase the communication load
on the processors, such as large messages with relatively few
operations to be performed on them, or large numbers of small
messages, or inefficient data transfer techniques, will reduce
the computational effectiveness of the system. On the other
hand: some large problems are naturally I/0 bound, such as
telephone switching or data acquisition. The multi-
microcomputer should be as effective as a uniprocessor in such
cases.

In summary, multi-microcomputer systems could function
effectively in the solution of large computational problems,
if suitable microcomputers could be implemented with VLSI
technology. The computational problem would be divided into
tasks, to keep all the processors busy. More than one problem
could be handled bv assigning a subset of the available

processors to each collection of tasks. The system memory
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should be partitioned so that processors do not slow each
other through contention. A queuing structure is needed, so
that the processors may communicate by chaining outputs to
inputs. Finally, the amount of time a processor uses for
communication limits the time it has available for
computation; so, the amount of communication should be
limited, and efficient methods should be used, if many
processors are to be utilized effectively.

The next major section describes a new multi-
microcomputer structure, which is related to X-tree and PSBH.
The similarity is only general, since this structure is
neither a tree or a hypercube. It is a structure based on

recursion and geometric symmetry.
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GEODE STRUCTURES

The structured architecture described in this section has
been labelled "Geode," as a name for both an interconnection
topology and a proposed computer system. The name is a
combination of the words "geometry" and "node." Geodes may be
regarded as data structures, formed by recursively organizing
a directed graph in a symmetrical fashion. The resulting
collecticn of nodes and links is geometrically organized into
polygons, or even polyhedrons, varying with the number of
communication ports available at a node.

Figure 4 shows three Geodes, each based on nodes with
four ports. The single node on the left is the basic unit of
implementation for all 4-port Geodes. Therefore, the position
of a node in a structure is its only distinguishing feature.
The three Geodes obviously differ in complexity, and it should
be apparent that Geodes of higher complexity are constructed
from lesser Geodes. In fact, Geodes can be recursively
extended to any size. Asymmetrical structures can also be
constructed, but this paper will deal primarily with

symmetrical Geodes and their basic characteristics.

Properties of Geodes
The recursive, geometrical and symmetrical properties of
Geodes allow arbitrarily complex multiple computer structures
to be modelled, and traversed from node to node, using a very
simple routing algorithm. This algorithm could be used to

control communication within such structures.
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Since a routing program will be presented in subsequent
paragraphs, let us briefly describe the parameters required
for a Geode traversal. These are:

1. Source address.

2. Destination address.

3. Number of ports per node.

4., Level of recursion (complexity).

)
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Figure 4. Three Four-port Geodes

The first two parameters =-- the addresses of the source
and destination nodes, use a recursively-ordered addressing
scheme over the full structure. This implies that the
position of a node can be inferred from its address, and that
the node can use its own address to determine the addresses of

other nodes connected to its communication ports.
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Thus, the addressing scheme is fixed and global, providing
each node and its communication ports with unique
identifications, which are known to the node and its
neignbors.

The third and fourth parameters are "P" and "R"; the
number of communication ports per node, and the level of
recursion, respectively. To simplify discussion, a tuple will
be used to identify symmetrical Geodes, based on P and R. The
tuple will have the form (P,R). So, a Geode with a P-value of
four and an R-value of three would be called a (4,3). Figure

5 depicts Geodes with 2, 3, 4 and 5 ports per node, at various

levels of recursion.

o000
(2,2)
(3,3)
(5,1)
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Figure 5. Various Geodes
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Using a recursive definition, a Geode with an R-value of
X, for X greater than zero, is comprised of "clusters," where
the clusters are defined as Geodes with R-values between one
and X~-1. For example, a (4,1) is formed by connecting four
4-port nodes to each other. Each node is connected to P-1
neighbors, and has one communication port left over for
external connections. Thus, the (4,1) has four unconnected
ports, like a single node, and it can be directly substituted
for any node or cluster in a four-port structure. Such
substitutions can give rise to asymmetrical topologies, where
some nodes are more "concentrated" than others.

Given the parameters P and R, one can construct an
appropriate symmetrical Geode. As shown below, these
parameters can also be used to describe several general

characteristics of symmetrical Geodes:

The numhoer of nadea (N -
~he numbker of nodeg (Ni:

The total number of communication links (T):

T = (P**(R+1)+P)/2.

The number of internal communication iinks {(I):

I = (P¥*(R+1)-P)/2.

The maximum distance (M) between any two nodes:

M = (2**R)-1.
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Geode Addressing
The Geode addressing scheme uses base P numbers to

identify the nodes, and to enumerate the communication ports.
Figure 6 depicts a (4,2) with the nodes and ports fully
identified. The addressing technigue follows the recursive
definition. Basically, nodes or clusters are aligned in
geometrical patterns, and a base P number is used to identify
each position in the structure. A node address has R digits,
one for each level of recursion. An address digit describes
the position of a node in a cluster, or the position of the

cluster in the next higher-order cluster, and so forth.

Figure 6. Geode Addressing Method
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Construction of a Geode is begun by labelling the ports
of each node in a consistent fashion, so that all nodes are
identical. The port addressing scheme must be known to the
nodes, so that a selection can be made by a routing program,
which is also identical for all nodes. In the examples
presented here, alphabetical characters will represent base P
numbers, so that three-port Geodes would use letters A, B and
C as port addresses.

The second step is to ccnnect the ports of the nodes
together, so that the 'A' port in the 'B' position connects to
the 'B' port in the 'A' position, and so on. As a consequence
of this strategy, the P "left-over" links of each cluster
correspond to the position of the nodes where they are found.
For example, the A-node has an unconnected A-port, and the C-
node has an unconnected C-port. The resulting Geode is then
logically equivalent to a single node. Thus, structures can
be connected to each other, or they can be internally expanded
to any size, with no basic changes in the address assignments
of the components. As each new level of recursion is
implemented, an extra digit is added to the beginning of each

node address, to identify its parent cluster.

Geode Traversals

The PL/1 program TRAVEL, shown in Appendix A, is a simple

program which traverses symmetrical Geodes. The source

address is specified in the string SRC, and the destination

address is held in DST. The variable R is the level of
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recursion, and it determines the length of the address strings
-- one character per level. TRAVEL will handle Geodes with
any number of ports, up to the limits of the PL/I character
set, as long as the characters in the SRC and DST strings
represent base P digits. No tests are performed to verify the
correctness of addresses.

This version of TRAVEL performs only one traversal, using
the initialized values of SRC, DST and R. However, the
program can be modified to perform many traversals, and to
count the number of hops in each. In this way, the average
distance between nodes can be computed, for any symmetrical
Geode. The program could also be adapted to simulate Geode-
based computer systems.

The main routine invokes the function NEW iteratively,
until it returns false ('0'B). The current node (SRC) and the
last output port (TCHAR) are printed at each iteration. NEW
invokes PORT to get the output port ID. This character is
then used in the generation of the address of the node at the
other end of the output link. NEW hops from node to node in
this fashion until PORT returns an exclamation point in the
variable TCHAR.

PORT compares the SRC and DST strings until it finds the
highest-order DST character which does not match the
corresponding character in SRC. The DST character is returned
as the output port ID, unless the strings match. If SRC=DST

then the traversal is finished.
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NEW must find the lowest-order character in SRC which
does not match the port ID. It then replaces all lower-order
characters in SRC, using this as a replication constant. The
replication character is then replaced by the port ID. This
transposition is accomplished with a concatenation operation
and a built-in REPEAT function. If the lowest-order character
in SRC does not match ﬁhe port ID, then only this character is
changed, corresponding to a hop within the same first order
cluster. Otherwise, the new SRC address will represent a hop
to a neighboring cluster.

PORT is the basis for "real" routing algorithms, which
might be used to switch messages through Geodes. Each node
would use PORT to determine the approupriate output link to any
other node. It would then transmit a message, packet or other
data representation through the port. The process would be
repeated at each node, until the message reached its
destination.

This type of fixed routing algorithm can easily be
implemented in software, firmware or combinational logic.
However, fixed routing schemes are not suited for fault-
tolerant systems, because the entire system could be disrupted
by a single node or link failure. Therefore, a more pragmatic
approach might be to use the algorithm merely to initialize
routing tables in each node. Failures or traffic congestion
could then be handled by dynamically modifving the tables, to

switch communications onto alternate paths.
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The average distance between nodes in a multiple computer
architecture is of considerable importance if random
traversals are frequently attempted. This could be the case
in a general purpose system which used the communication links
for interprocessor synchronization, and for access to a
distributed data base.

The average path length in several symmetrical Geodes was
computed, using a variation of the TRAVEL program. The
results of the computations are shown in Table 1. The

following information is presented:

1. Number of pcrts per node (P).

2. Level of recursion (R).

3. Total number of nodes per structure (N).

4, Total number of links per structure (T).

5. Maximum path length (M).

6. Ave. path length, with SRC-SRC traversals (AVEl).

7. Ave. path length, without SRC-SRC traversals (AVES).

Two values are given for the average path length. AVEl
includes a zero-length traversal from each node in a structure

to itself. AVE2 does not include such traversals, because

-\-h.‘.. T N e ol IR U ._;-..-'.....l-.... b == - h P T
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length computations have been performed for X-Tree, using
zero-length traversals in the calculations of average path

length. Therefore, AVEl is used to compare Geode and X-Tree,

as shown in Figure 7.
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Table 1. Average Path Length
P R N T M AVEl AVE2
3 2 9 15 3 1.78 2.00
3 3 27 42 7 3.93 4.08
3 4 81 123 15 8.20 8.30
3 5 243 366 31 11.16 11.20
4 2 16 34 3 2.06 2.20
4 3 64 130 7 4.64 4.71
4 4 256 5i4 15 9.78 9.82
5 2 .25 65 3 2.24 2.33
5 3 125 315 7 5.09 5.13
5 4 625 1565 15 10.78 10.80
8 2 64 260 3 2.52 2.56
8 3 512 2052 7 5.78 5.79
8 4 4096 16388 15 12.32 12.32
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Figure 7. Average Path Length: Geode vs. X-tree
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The two architectures seem very close when a fully-ringed
X-Tree, with five ports per node, is compared to symmetrical
four- and five-port Geodes. However, the slopes of the curves
differ.

It is interesting that a four~port Geode is both

faster and less complex than a fully-ringed X-Tree with small

numbers of nodes, (N < 20) while X-Tree appears to outperform

five-port Geodes when large structures are considered, (N >

1000).

Practical Considerations

design of structured multiple computer systems. However, the
difference between Geode and X-Tree is not very great, for
5-port nodes; so other factors may be more important.
Structured architectures could readily be used in simulators,
in general-purpose computers, and in special-purpose machines
such as pattern-recognizers, relational database processors,
and intelligent automata. Thererfore, implementation ana
applications problems probably deserve some consideration.

One mayv assume that nodes for any structured architectu.e
could eventually be fabricated on a single VLSI chip. Such a
microcomputer could include CPU(s), memory, user-I/0 and DMA-
based controllers for interprocessor communications. The
links could be imrlemented in a variety of ways, with either
serial or parallel data transfers. Such choices will depend
on the bandwidth requirements, and may require careful

analysis of various applications.
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One immediate observation is that less-complex chips will
be cheaper and easier to produce. Nodes with four ports can
be more readily implemented than 5-port nodes. Therefore, it
would appear that four-port Geodes have a clear advantage over
fully~ringed X-Trees, which require 5-port nodes.

One of four ports can be addressed with only two bits,
compared to three for one of five ports. Thus, any address in
a (4,4) can be represented with a single byte, allowing 256
processors to be addressed very conveniently. This factor can
reduce the complexity of internal node architectures, and it
can speed-up communication because the address fields in
messages would be expressed more efficiently.

Also, port selection and message routing are very simple
procedures for Geodes. This factor could result in reduced
complexity and better performance, regardless of the number of
ports or the level of recursion.

Clustering is another factor which can improve
performance in the execution of concurrent tasks. Processors
which are closely-connected can communicate faster than those
which are far apart. Therefore, if the tasks of a job are
executed on processors in the same cluster, the average
communication bandwidth should improve, compared to randomly-
located tasks. Geodes can easily take advantage of this

principle of locality, because they are clustered by

definition.
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Implications

Structured architectures are one way to increase the
power of computer systems at a very low cost. If all nodes in
a structure are identical, at least in hardware, then a VLSI
processor could be mass-produced, implementing most of the
architectural features on a single chip. Structures like X-
Tree or Geode could then be expanded to extraordinarily large
sizes.

Many problems must be solved before structured systems
become a reality. It has not been demonstrated that a large
system can function without centralized control. If not, then
perhaps "supernodes" should be added to the structures.

Figure 8 shows a (4,2) Geode witl. a central supernocde,
which is also implemented as a Geode. Structures of this type
could be used for applications where a main task, requiring a
high processor concentration, coexists with several peripheral
tasks, which are less computationally intensive. Such a model
corresponds roughly to the functions of the fovea and
periphery of the human retina. Therefore, this type of
organization might be useful in artificial vision.

This illustrates that the efficiency of wvarious
topologies could be extremely dependent on the applications.
The required link bandwidth for interprocessor communications
has not been established. Some of the nodes or links in a
given structure may constitute bottlenecks, depending on the

structure and the application. Finally, problems like task
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synchronization, resource management, and interprocessor
communication need much more attention. It is hoped that the

unique characteristics of Geode architectures will make such

problems more manageable.

Q @ Q O

Figure 8. (4,2) Geode with Central Supernode

The next section describes a unit of implementation for
structured architectures like X~-tree, PSBH and Geode. This
processing element, utilizing only two communication ports per

processor, appears to be the "lowest common denominator" for

such structures.
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MP: A STRUCTURAL ELEMENT

The Geode structures described above represent only one
of many classes of multi-microcomputer structures. X-tree and
PSBH are two others. Such proposals are reasonably general,
in that the methods for implementing and interconnecting nodes
are not specified in detail.

The following paragraphs describe a design for a general
purpose processing element, which can serve as the basic unit
of implementaiton for the nodes and links of essentially any
structure. This element, called an MP, (for multi-processor
or memory-processor) uses two identical communication ports,
to ease the connectivity and pin-out problems encountered in
VLSI designs.

Nodes are formed by attaching one port of each MP to a
lccal shared-bus, for intranodal communication. The remaining

port of each MP is used for internodal communication. Either

et = TAT T 1A . . 1
serial cxr parallel kusses cculd ke used; however, only 2

parallel memory-bus implementation will be described here.
Communication Bus

A bus is a collection of conductors which can be shared
by a number of active devices, like computers or communication
controllers. Passive devices such as memories may be
connected to a bus for the use of the active devices.
However, only one active device can use a bus in a given
cycle. Consequently, at least two capabilities are reguired

of each active device or processing element.
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First, a method is needed for connecting and
disconnecting units from a bus, in response to a request for a
bus cycle. Logic gates which can be enabled and disabled,
such as open collector cr three-state devices, are required
for such purposes.

Secondly, a method is required for recognizing the bus
requests of several devices, and for granting the bus to them
in a seguential order. That is, only one device can be
enabled at a time. Priority arbiter circuits, like the 74148,
are suitable for this role. If system memory is divided into
several distinctly addressable areas, one for each bus, then
address decoding logic can be used to generate the bus request

signals. Figure 9 shows a generalized shared-bus

organization.
Internal Architecture

The.internal architecture of a processing element can be
divided igato several secCions, as snown i rigure 10. Among
these are the CPU, local memory, local I/0, and a
communication structure. If the communication structure is
memory mapped, then it may be viewed as a secondary or
tertiary memory level. Therefore, the local memory could be
separated into a cache and a working space. This would permit
virtual memory technigques to be used, in conjunction with the
multi-tasking principles previously described.

However, many different architectures could be

implemented, depending on the nature of the problems a



36

particular structure is designed to solve. An internal

arrangement optimized for image processing would probably not

be suitable for digital filters, and vice versa. The

applications, and hence the internal architectures are not of

primary interest in this paper. But, we can assume that any

architecture will involve, at a minimum, a processing section

and a communication section. The logical operation of the

latter is of primary importance here.

CPU CPU CPU
MEMORY MEMORY MEMORY
iL0GTC i06TC LOGIC

{ | L } L J

b

<= T BUS >

l_l

ARBITER

Figure 9. Generalized Shared-bus Structure
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Deadlock
Aside from the problems of arbitration and connectivity,

memory-oriented multi-microcomputers suffer a potential for

deadlock. This is demonstrated in Figure 11, where a cycle of

three processors is depicted. If each processor

simultaneously requests an access to an adjoining memory, as

shown by orientation of the arrows, and then waits for its

request to be granted, the system will be deadlocked.

! !

LOCAL COMMUNICATION
- 1/0 STRUCTURE

4 4
< LOCAL BUS >

LOCAL

CPU MEMORY

Figure 10. Internal Structure of a Processor
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In issuing a memory request, a processor must activate
its address, data and control lines. These lines are tied to
the shared memory, which is "locked-up" while the signals are
active. A processor must be disconnected from its shared
memory for an adjoining processor to gain access; yet, a
processor cannot yield the memory while it is "trapped" in a
wait state. This paradox results in a potential for deadlock
when conventional microprocessors are used as processing
elements.

The problem can be solved by the addition of a partition
between each processor and its shared memory areas. Such
partitions are implemented like memory-bus interfaces =-- using
open collector or three-state devices. This allows a
processor to be disconnected from its shared memory until its
own external requests are granted. Thus, processors with high
priorities can access the shared memories of their lower
priority neighbors, if an arbiter is used to prevent ongoing
cvcles from being disrupted.

Conventional microprocessors would be suitable candidates
for multi-microcomputer applications, i1f the addition of extra
circuitry is acceptable. A better approach would involve new
VLSI designs which have the desired characteristics
incorporated into a single package.

Two such designs are diagrammed in Figures 12 and 13.
Both have partitions between the processor sections and the

shared memory sections. The main difference between them is
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that the design in Figure 12 has two unidirectional bus-access

ports, while the other has two bidirectional ports.

MEM CPU

The processors can access the shared memories in both
cases, and external processors also have access. Therefore, a
capability for communication exists in both configurations.
The tradeoff is primarily one of complexity vs. flexibility.
The design shown in Figure 12 would be less complex and
costly, because unidirectional address buffers are simpler
than bidirectional transceivers, and because less arbitration
logic would be required. However, a bidirectional design

would allow more flexibility in accessing shared data. This
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feature might be of value in certain applications, especially
if messages were routed through the shared memory without
involving the local processor. The communication load of

intermediate processors could then be reduced, for traversals

of two or more hops.

280 Microprocessor Implementation

The schematics shown in Figures 14 through 16 represent a
very simple implementaion of the circuitry for an MP.
Ideally, a more advanced processor/interface would be used,
but this arrangement allowed most of the multi-microcomputer
principles described above to be tested. The circuits
depicted here use a Z80 microprocessor as a processing
element. The 280 and its memory and I/O rescurces are not
shown, but the essential control lines are included in the
diagrams. This implementation is similar to the
unidirectional PP Snown 10 rigure 12, €xcept tiwat the
processor partition is omitted.

As megtioned earlier, the function of the processor
partition is the prevention of deadlock =-- a condition which
can also be avoided by eliminating cycles from the MP
interconnection structures. In a general sense, the extra
partition is required, but not for the simple configuration
used in the software experiments to be described in the next

major section.
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Figure 12.

MP with Unidirecticnal Porks
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Figure 13. MP with Bidirectional Ports
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Figure 14 shows the processor port of Figure 12 in
greater detail. The two 74LS244 octal buffers are used to
enable the local 280 address lines onto an external bus. The
74LS245 octal transceiver allows data to pass between the 280
and the bus, in either direction. The 74LS125 switches the
four Z80 memory and I/0 control lines onto the bus. These ICs
are TTL three-state devices, and all are enabled by the bus
grant signal from an external arbiter. Additionally, the
7418245 requires the local read signal, to control the
direction of the data transfers.

Figure 15 shows essentially the same functions, but for
the memory port of Figure 12. The circuits differ in that the
memory port includes some additional address mapping logic to
transform the external address to an internal address, in the
range of the local memory and I/0 decoding circuitry. The
three~state ICs in the memoryv port are enabled by the DMA,
(direct memory access) signal of the local processor. A
separate arbiter and a 280 bus partition could be used to
divide the Z80 address space into local and shared areas, but
this was deemed unnecessary for experimental purposes.
Additionally, the external write signal is used with the
memory port 74LS245, to control the direction of the data
transfers.

Figure 16 shows the remainder of the circuitry regquired
for a2 simple MP interface. This consists of a section for

decoding an address in the range of the external bus, a
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generator for the bus request and Z80 wait signals, and a
semaphore circuit. The address decoder uses the upper address
lines of the 280 to determine when the address is within the
bus segment. The decoder drives the bus request and Z80 wait
lines low. When the bus grant line from the external arbiter
drops low, the Z80 wait line goes high. This terminates the
Z80 wait state, and allows it to proceed with its external bus
cycle.

The semaphore logic was included to allow external
processors to synchronize their queuing operations with those
of the local processor. If one processor attempts a queuing
operation while another processor has one in progress, then
the queue structure may be disrupted. Thus, a doctrine of
mutual exclusion is followed, so that only one processor is
allowed to perform communication queuing at a time.

A semaphore is the name for a circuit or operation which
permits mutual exclusion. A Z80 semaphore must be implemented
with additional logic as shown here, because the Z80, like
most microprocessors, is incapable of performing semaphore
operations on memory locations. Larger computers use special
test-and-set instructions to implement memory semaphores.

The semaphore circuit used here is set by a write
operation at its I/0 port address. It is reset by a read
operation at that address. However, the value of the
semaphore can be determined by a read operation, through data

line #7, before the reset signal is generated.
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So, if the semaphore is set, this indicates to the
processor which reads it that the communication gqueuing
structure is available for manipulation. If the semaphore is
found to be reset at the time of a read, then the
communication structure is temporarily in use, and the
prccessor must wait. Since the semaphore is always reset at
the termination of a read cycle, a second read operation,
without an intervening write, will find the queuing structure
unavailable. When a processor completes its gqueuing
operation, it sets the semaphore by writing to it, allowing a
single blocked processor to proceed.

The purpose of the MP interface described above was to
allow the interconnection of two or three small Z80
microcomputers, so that a multi-tasking software package could
be tested. As it turned out, the operation of the MP and the
software was verified with a dual-processor configuration, as

described in the following section.
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MULTI-TASKING SOFTWARE

The programs described in the following pages were used
to explore several questions about the effectiveness of the
techniques presented in preceding sections. First, can a
program written and optimized for a uniprocessor be
effectively rewritten for a multi-microcomputer system?
Secondly, to what extent does the communication implicit in a
multi-microcomputer implementation influence computational
efficiency? Is memory contention a significant factor? Does
a mutually exclusive gueuing system provide
reliable communication channel? And finally, can a near-
linear speedup be achieved as more processors are added? The
experiments presented here do not address these gquestions
rigorously; however, the results seem to speak positively for
multi-microcomputer implementations, at least for certain
types of problems.

The programs presented in Appendix B were written in a
high-level language developed at Icwa State University, called
Portal (6). Several small programs were written in 280

assembly language, for utility

g

urposes, and are contained in
Appendix C. The software was compiled or assembled, linked
and downloaded, using a PDP-11/34 system under Unix. The Z80
microcomputers used firmware monitcrs, to allow program
downloading and debugging. The Portal programs were all
developed and checked on the host system, before being

recompiled for the Z80s.
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The first program, called "unipro," was written for a
uniprocessor, to calculate the average path length through
Geode structures. It uses the same algorithm as the PL/I
program TRAVEL, presented earlier. The main difference is
that many traversals are performed by unipro. The traversals
are produced by the function "produce," and are accomplished
by "consume."

Three other functions are invoked in the main routine of
unipro. The function "initialize" first sets the initial
value of the program variables. Then, "sclk" starts the real-
time clock interfaced to the 280 microcomputer. When the main
loop finishes, "rclk" stops and reads the clock. The two
clock functions were written in 280 assembly language, and
were linked with the main module.

These programs use two parameters, and produce two
results. Respectively, the parameters P and R are the number
of ports and the level of recursion of a given Geode. These
constants determine the complexity of the resulting series of
traversals. This, in turn, determines the run-time of the
main loop =-- an interval measured by the clock routines. The
other result is a record of the total number of hops performed
in the main loop, which is stored in the 16-bit words ulé and
116. This gquantity, when divided by the number of traversals,

.— ‘gives the average path length through the selected Geode.

The second program "produce" is a version of unipro,

modified for multi-tasking with more than one Z80 processor.
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It is more complex than unipro, reflecting the inclusion of a
queuing system for communications. This required two
additional assembly language programs, "p prd" and "v_prd,"
which perform the semaphore operations described previously.
Four additional Portal functions were required as well, to
perform the queuing operations.

The program starts in the same way as unipro, by invoking
the initialization and clock start-up routines. However, the
semaphore is set before entering the main loop, by invoking
v_prd, to indicate to other processors that the gueuing system
is available.

The structure of a queue element is declared in the first
part of the variables section. The queue elements contain
fields for source and destination addresses, and for the
traversal length. They are chained together, through their
link fields, into two separate queues. The two queues consist
of elements containing tasks, with "thead" and "ttail" as
pointers, and of elements containing replies, using "rhead"
and "rtail." A task consists of a source and destination
address pair, while a reply gives the distance between the two
nodes, using the "length" field.

The functiocn "get-reply" removes an element from the
reply queue, and adds the length to 116 and ulé. Then,
produce rewrites the queue element with a new source and
destination address pair. Next, "rel task" releases the

element onto the task queue, where it may be picked-up and
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executed by any free processor. The processor executing
produce will become free when it empties the reply queue =~ a
condition detected by get_reply, and indicated when the
Boolean variable "flag2" is set.

This condition causes produce to perform one of the
traversals it has previously c¢enerated, by invoking get_task,
consume and rel _reply. These routines remove a task from the
task queue, execute it, and return the reply to the reply
queue.

This results in a producer/consumer relationship between
the two sections. The output queue of the producer is the
input queue of the consumer. The opposite is true in the case
of the reply queue. This relationship is demonstrated by the
third program, "consume," which is essentially identical to
the consumer section of produce.

The consumer is far more computationally complex than the
producer. Therefore, one producer can serve many consumers.
Since a global queuing structure is used, with semaphore
synchronization, any processor with access to the memory
containing the queue structure can function independently as a
producer or consumer. Such an arrangement permits expansion
of the system to any size, by simply adding processors loaded
with the appropriate producer or consumer software.

However, additional care is required to achieve a proper
balance. Since one producer can serve many consumers, it only

makes sense to add extra consumers at first. Once the limit
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of a single producer is reached, it will tend to become a
system bottleneck. This calls for the addition of another
producer and a group of consumers, if increased performance is
required.

t least three main factors tend to reduce the efficiency
of such multi-tasking systems. First, communication implies
that queuing routines must be invoked, requiring some of the
avallable processor cycles. Secondly, a processor may spend
some time walting at a semaphore, while another processor
performs gueuing operations. Finally, memory contention can
cause a processor to walt on a cycle-by-cycle basis, while
another processor completes a memory access. The experiments
described in the fcllowing paragraphs provide some insight
into the significance of these factors to the operation of

multi-microcomputer systems.

Experiments
The five simple experiments described in the next few
paragraphs were performed with dual 280 configuration. One

Lo alelal > 1T AT
processcr was conn

(]
(9]

ted to the Unix system and 2 CRT terminal
while the other communicated only through the memory of the
first. This secondary processor was attached to the main unit
through the memory port diagrammed in Figure 15.

Programs for the secondary processor were first
downloaded into the memory of its host. The semaphore circuit
was set twice in succession =-- once to tell the secondary

processor to load the program into its own local memory, and
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again to tell it to begin execution. The programs for the
primary Z80 were then loaded and executed.

The secondary processor had access to the memory and I/0
space of the primary. through its memory port. Since it used
the queue structure for communication, its first action was to
read the semaphore. The semaphore was initially reset,
causing the secondary to wait for the primary to load, start
and initialize its program, and then to set the semaphore.
After this point, both processors were in full operation,
communicating through the semaphore~protected queuing
structure.

The first experimental step was to compare the
performance of a single processor executing the first working
version of unipro, with a dual-processor running the earliest
versions of the programs produce and consume. Since none of
the programs had been optimized, the results are of limited
value, but the observed speedup was 1.22, for a (3,4) Geode.

At this point, the main goal had been to get the system
working, so the software had not been fully developed. The
produce program had no consumer section. Its only function
was to produce tasks and sum the replies. The consume program
accessed the task element as contained in the memory of the
producer, instead of obtaining a local copy. This caused some
memory contention, since the task element was accessed
frequently byv the consumer.

So, the second experimental step was to modify the
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consumer into its present form, to test the effect on the
computation rate. The function get task now copies task
elements into variables in the local memory of the consumer,
before they are used in traversals. This reduces the number
of accesses to the producer's memory, and so improves
performance -~ as long as the copy operation requires less
time than would be involved in contention. The speedup ratio
increased to 1.47 as a result of this modification.

Later analysis determined that this was not a simple case
of memory contention. Contention, by definition, 1s a factor;
however, it may not have been a very important one in this
case. The performance improvement can be accounted for by the
improved code generated by the compiler when data accesses use
ordinary variables in local memory, instead of pointer-type
variables. Before the modifications to the consumer, pointers
were used to give indirect access to variables outside the
local data segment -- the queue elements in the producer's
memory area. Elimination of this level of indirection was
probably more responsible for the resulting speedup than was
the virtual elimination of contention.

The results of this analysis led to an examination of the
technigques used in developing the software, as the third
experimental step. All programs were modified, like the
consumer, to take advantage cf the characteristics of the
compiler and the Z80 processor. One major change was the use

N

of byvtes as variables, instead of i6-pit words, whenever



55

possible, allowing more efficient code generation for the
8-bit Z80. These changes were more effective for unipro than
for the dual-processor arrangement, because the speedup factor
dropped to 1.07, with a (3,4) Geode.

Obviously, the dual-processor arrangement was seriously
out of balance. The consumer program proved to be much slower
than the producer, causing a bottleneck. This was
demonstrated by a fourth series of experiments, which also
resulted in the observation of an interesting paradox.

The approach involved the addition of successively
greater amounts of delay to the producer, to see how much
effect this had on the execution speed of the dual-processor
system. Each time the producer, (operating without a consumer
section) produced a task, a delay function was invoked. Since
a queuing system was used, this had no effect on the execution
speed, as long as the producer ran fast enough to keep the
task queue completely full. Since the producer processor was
not allowed to consume tasks, it idled most of the time,
accounting for the low 1.07 speedup ratio.

Adding delay to the producer did not delay the consumer,
as long as the task gueue remained full, and the reply gqueue
empty. The delay paradox was observed when the performance of
the system suddenly increased after an increase in the delay.
At this point, the producer and consumer became balanced, in
terms of their relative execution speeds. This improved

performance because the queuing programs ran faster when their
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respective queues were neither full nor empty, but somewhere
in between. This is the case with a balanced system, with the
queue length varying over a range. Thus, gqueue size is a
factor in queuing efficiency, even with a well-balanced
system.

The results of this fourth series of tests led to the
inciusion of a consumer section in the main loop of the
producer, to bring the producer to its present form. Since
delays, up to a certain point, had no detrimental effects, the
extra computations could only help improve efficiency. The
addition of the consumer section, yielding one producer and
two consumers, caused a dramatic jump in the speedup ratio
from 1.07 to 1.67 for a (3,4) Geode.

The fifth series of experiments involved testing the
final configuration with Geodes of several types, as shown in
Table 2. Three comparisons were made. First, unipro was
compared to the producer program, in its present form, (with a
consumer section) to determine effect the additional
communication programs had on performance.

These ratios are shown in column Cl of the table. As the
average distance through the Geode increased, Cl increased,
indicating a lesser effect of communication. A greater
average distance means that more hops are performed in a
tvpical traversal. In turn, this causes the consumer to

become more compute bound, lessening the communication load.
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Table 2. Experimental Results

GEODE  AVE1 c1 c2 c3

(2,7) 42.66 0.91 1.82 2.00
(3,5) 11.15 0.85 1.71 2.00
(4,4) 9.78 0.81 1.62 1.99
(5,3) 5.09 0.71 1.50 2.10
(8,3) 5.78 0.75 1.47 1.96

The C2 column shows a comparison between unipro and the
full dual-processor configuration. Because a semaphore-
protected queuing system was used, no changes were required in
the producer =-- it was only necessary to plug in the
additional processor and start its consumer software. More
consumers could have been added, if the required hardware had
been implemented.

The results follow those shown in column Cl. The
consumer becomes more compute bound as the average path length
increases, reducing the need for communication, which results
in greater speedup. This illustrates that the performance of
a multi-microcomputer system can be estimated from
observations of a uniprocessor.

If the use 0of communication functions slows the augmented
uniprocessor algorithm considerably, then less speedup will be
attained by adding extra processors. However, if tests with
the augmented uniprocessor are encouraging, then a basis
exists for proceeding with the multi-microcomputer

implementation.



58

Column C3 shows a comparison of the producer, running
with a consumer section on a uniprocessor, with the dual-
processor configuration. In most cases, the execution speed
is essentially doubled with the dual processor. Again, this
illustrates that the inefficiencies in multi-tasking systems
are mainly associated with the process of communication.
Except for communication overhead, a linear speedup could be
realized as extra consumers are added, until the producer

becomes overloaded.
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CONCLUSIONS

The work described in this document demonstrates that a
recursive interconnection structure can be used to construct
large multi-microcomputer systems. Such systems are very
promising for future implementation with VLSI technology.

This paper describes how a Geode system can be constructed,
using a processor element called an MP. The design
alternatives were considered, and two MP prototypes were built
and tested. The two prototypes were used to develop a multi-
tasking algorithm based on producers and consumers. A
semaphore was implemented in hardware, to allow
synchronization of the multi-tasking software. The results of
a series of experiments indicate that multi-microcomputers can
be cost-effective, as long as the appropriate design
techniques are utilized, as described below.

Advanced VLSI microcomputers are needed, with features
equivalent to most mainframe computers incorporated into a
single package. Some of these features are 32- and 64-bit
word lengths, hierarchical memories with mapping hardware, and
a full set of arithmetical and logical instructions. Advanced
uniprocessor techniques such as pipelining would be useful if
thev could be fitted into the package. The microprocessors
developed in the last decade, including the latest 16-bit

versions, are generally too primitive for most computationally

intensive applications.
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The applications can be compute bound, or in some cases,
I/0 bound. Compute bound algorithms spend little of their
time communicating, so computations proceed with maximum
rapidity. Algorithms which are not compute bound can be
efficiently implemented if they naturally involve buffer-
oriented data manipulations which fit into a queue structure.
In this case, a uniprocessor would also be limited by the
queuing operations, so parallel execution of tasks would
introduce no additional overhead.

The memory system should be partitioned into local and
global hierarchies to minimize the effects of memory
contention. If processors access their data segments
frequently, then the data should be moved into the local area.
For this reason, code should not be shared directly, but a
common copy could be maintained in the shared memory.
Partitioning also fits well with virtual-memory and cache-
oriented designs.

A producer/consumer multi-tasking algorithm works well,
and can be expanded to any size. The division, in terms of
execution time, need not be equal, as long as the bottleneck
process can be replicated to achieve a proper balance. One
producer could serve many identical consumers, Or one consumer
could rrocess the ocutput of several producers, depending on
their relative speeds. The queuing system tends to mask any

temporary variations in speed, as long as the queues are long

enougn.
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The MP approach can be used to implement many different
structures, with the shared busses representing nodes, and the
attached MPs providing links. Irregular structures can also
be implemented, using routing tables instead of fixed routing
algorithms. In this way, structures can be created to handle
specialized problems.

Memory-bus oriented designs are not inherently better
than broadcast channels and serial or parallel communication
links, but they are simple to implement, and work well for
short data transfers. Since low communication loads are
necessary for good computational efficiency, slower and
cheaper communication methods can ks used as long as they
provide sufficient bandwidth to allow a gqueuing system to
maintain a relatively constant throughput. Serial
communication seems advantageous from the standpoints of
complexity and connectivity, especially if communication
bandwidth is low and messages are long.

The Geode interconnection structure could be useful in
orthogonal types of problems. Applications like spatiail
correlation and artificial vision seem to fit particuiarly
well. The four-port structure of Figure 8, with the recursive
central supernode, could be especially effective in the
latter, while eight-port Geodes might be preferable for three
dimensional spatial problems.

Cost-effectiveness is the central idea behind multi-

microcomputer proposals. Large mainframe computers can
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provide the same power, but VLSI processors can be mass-
produced very inexpensively -- at least, this will soon be the
case. Structures like Geode, which allow easy interconnection
of processors like MP, promise to make large-scale computing
relatively cheap during the next decade. Some areas, such as
multi-tasking operating systems, and concurrent high-level

languages need more development, but the necessary principles

are well-established.
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APPENDIX A: TRAVEL PROGRAM

TRAVEL: PROC OPTIONS(MAIN);

DCL SRC CHAR(8) VAR; /* SOURCE ADDRESS */

DCL DST CHAR(8) VAR; /% DESTINATION ADDRESS */
DCL R FIXED BIN(15); /* LEVEL OF RECURSION */
DCL CTR FIXED BIN(15); /* COUNTER VARIABLE */
DCL PTR FIXED BIN(15); /* STRING POINTER */

DCL TCHAR CHAR(1); /% CHARACTER VARIABLE */

SRC = 'AB'; DST = 'DC'; R = LENGTH(SRC);
PUT EDIT(SRC,DST,R) (A(R),X(2),A(R),X(2),F(1));

DO WHILE(NEW); /*¥ HOP FROM NODE TO NODE */
PUT SKIP EDIT(SRC,TCHAR) (A(R).X(2).,A(1));

END;

STOP;

/********************************************************/
NEW: PROC RETURNS(BIT(1));

TCHAR = PORT; /% GET THE PORT ID */

IF TCHAR = '!' THEN RETURN('0'B);

DO PTR = R TO 1 BY -1 WHILE(SUSTR(SRC,PTR,1)=TCHAR); END;
SUBSTR(SRC, PTR,R-PTR+1) =

MATTIAD r DTDDTAM// CIIDCMD /O DMD TN D DMD N L
B ek N A | AN L daFd e \ WWVLIWD e b\ AN L daN e g AN aNT gy,

RETURN('1'B); /* NOT YET FINISHED */
END NEW;
JRERE kR Rk Rk okt kk kR Rk Rk kKRR R R A AR I F TRk k Rk kkkh kR R Rk Rk kR kk
PORT: PROC RETURNS(CHAR);
DO CTR = 1 TO R;
TCHAR = SUBSTR(DST,CTIR,1);
IF TCHAR =-= SUBSTR(SRC,CTR,1) THEN RETURN(TCHAR);
END;
RETURN('!'); /* SRC=DST */

END PORT;
END TRAVEL;



Frocedure sclk
~rocedure rclk

bedgin
imitializes
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while ster
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el ARl
LORREAMMET IR

ends?
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APPENDIX B: PORTAL PROGRAMS

Unipro: Uniprocessor Version

externaly

(X start real-tine clock %)
externaly

(X read real-time clock X

const
F = 37 (X nmumber of sorts rer node ¥X)
R = 45 (X level of recursion X)

var
srcCOIR-133¢ butes (X address of source node X)
dstCOIR-113¢ butes (X address of destinmastion node X)
sstr[OtR—-11: butes (X sroducer’s cory of srec X)
dstrLOtR—-11: bete? (X eroducer’s cory of dst X)
first[OIR-11: buter (¥ rroducer’s starting roint X)
(X bzsse P didits—- used in addresses X)
=orts[0$712 hute €Ay 'R/ y’C/y’'NI"9y’E’9’F’2s’G’y’H’>s
116 word rublic {0} (X hor counter—-—- hish X
1163 word sublic {0X7 (X hor counter—~— low X)
stess words (¥ eroduction ster counter X
last? words (X sroduction ster limit X)

=rocedure main rublicy

(X initialize varisbles X)
(X start rezl-time clock X)
last do bedgin

(X resad real-time clock X)

(X comrare two strings X
~rocedure cmestr(strisetr2yont) ! buter

Farm

#trld

~tLr2:

critd
begin

while cnt >
if @Crtrit++
else cnt——7

endgy

return trues

ends

(x

Chutes
Gbhutes
butesr

0 do bedin

“x @rtr2++ then return false
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X)
rrocedure initializes’
Var Xsul butes
bedin
ster
last

i
1 do bedin
)
3

-

ends
ends

rrocedure next(sstr)s

~arm srird @Chuter
var
ctrrindx: bytes
al=shsal botes
switch? buetes
bedin
indx (= R-1%
switeh (= trues

while switch do besgin
alrha (= srtrlfind]s
ctr = O

while 3lrha <> rortsfetrl and ctr < P do ctrt+s

if ctr = P~1 then 3leha 1= ‘4’
else zlrha (= rortsletr+ilds
srtrlindx] (= 3lrhas

if z2lphz <x 747 or dirndx = 0 then cwitch

else indx—--3
end?

.
and?

srocedure sroduces
var X3 butes
hedin
for ¥ (= 0 to R-1 do hedin
srclxl = sstrixls
detlvd 1= detelwls
endy

next(.dstri0J) ¢

if cmrstr{.dstrfO0ls.firstLOJsR) then
next{.sstrL0l)»
stertts
ends
endy
(X

do last (= lastxP;

(X increment destimation

(X initislize variasbles X)

(X increment addresses——~ base

(X coryg {srcsdsty X)

(¥ increment source asddress X)

Fl

address X))

*)
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X
Frocedure consumes? (X hor from node to node X)
var
ctretme: butes
enatledrswitcn? butes
scharsdcnars buter
bedgin

enabled = trues

while ernabled do bedgin
if cmepstr(.srcf0)r.dstiQ1»R) then enabled
else bedgEin
switch = trues
ctr ¢= O3
while switch and (ctr < R) do bedin
schar $= srclctrly
dehar (= dstlctrly

if schar <> dchar then switch (= false

else ctrtt+y
ends?

tme $= R-13%

(X hor within same cluster X)

if dechar <* srcltme] thern sreltmse] 1= dehar

else bedgin (X hor outside loczal cluster X)

switech = trues

while switch do bedin

if dechar <> srcltmerl then switech (= false
else tmg——3
endy
schar = srcltmels
sreitmerl 1= dehars
while tmr < R-1 do bedgin
Lmet+t?
srcltmerl = schars
ends
ends
1if not ++116 then wlé++s (X count hors X)

ends
As

en
ends
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Produce: Multi-tasking Producer

srocedure =_.Frd externals (X F semarhore operstion X)
~rocedure v_rFrd externalsy (X V semarhore oreration X)

~rocedure scik
=rocedure rclk

const
Fl
N

offset

var

externais (X sta8rt reai—-time ciOCK XJ
externals (X read rezl-time clock X)
= 33 (X rorts rer node X)
= 43 (X level of recursion X)
= $40007% (¥ address offset X%)

(%X zmueve structure X)

struct @ €
link?
length?
srcfOtR-111¢
dstLOtR-112
>

Bay (X link to rnext element X)

butes (X lendgth of a traversal X)

butes (X zddress of source node X)
butes (X address of destinmnation node X)

(X queue allocstion and rointers X)

tasklO:712
thead:
ttail:
rhead?
rtails
tems?
sptr?
crtrs

Q Fublics (X queue 3zllocation X

(£ Fublicy (X head of task ueue X)
Ba Funlicy (X tail of task ueue X2
e} Fublicy (X head of rerly queue X)
e rublicy (X L1l of rerly queue X)
Ca eublics (X temrorare rointer %)
(£l sublics (X sroducer rointer X)

Ga sublics (X consumer Fointer X3

(X 3ddress strings X)

el AP T

LU W YIN mm

dstr[O¢R-11¢
first[OIR-11:
srcelO¢R-11¢
dest[OtR-11:

rortsC07352

(X variabless
flag?

T1ia3g23
distance?
stegs

lasts

~ster?

cster!

1163

hute? (¥ congumor’/c ooew of conrce X)
butes (X consumer’s cory of destinstion X)
butes (X sroducer’s starting zddress X)
tutes (X rroducer’s cory of source X)
butes (X sroducer’s corw of destination X)
(X base F didits—— used in asddresses X)
bute LA’y ’B’y’C'y'LI"9y’E’9s’F 9’6" 9’H’'F)
flags amg counters X) .
hute {truers (X temsrorary 7138 X)
pbute {Tslsers (X temporare Tlas X7
bute {035 (X lensth of traversal X)
worad {0F+% (X source counter X)
word €135 (X source limit X}
word {8>ys (X =roduction counter %)
word 0% (X comrletion counter X)
worag Fublic €035 (X nor counter—-— low X)
wordg rublic  {0Xy (X hor counter—— high X)

13162
(X
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X)
~rocedure main Fublics
hedin
initializes (X set ur queue structure X)
sclks (k¥ start real-time clock Xx)
V_FTds (X set semarhore—- start sunchronization X’
while cster < rstesr do bedin (X consume 311 sroduced X)
get_rerlgs (X tre for s cueue element %)
if flag and ster < last then bedin (X rroduce X)
sroguces (X generate {srcrdst)r X
rel.tasks (X rut {srcedsty on tashk cueue X)
endy
if flag2 then bedin (X task eueue is full X)
get_ task? (X consume X)
if flags then bedgin
flag2 (= falses (X consume onlg one task %)
consume?’ {¥ no# from node to node X’
rel_rerlyus (X rut answer on rerly cueue X)
ends
ends’
ends
rcllks (X finished~-— read rezl-time clock X)
end?

{X comrare two strings X)
~rocedure cmestr(strisetr2ocont): butes

~3Tm
=trls Gowter
wtr2? Bbhuters
cnts betes
begin

while cnt > 0 do bedgin
it @rtrittd <> @riv2dd then reiturn Talse
else cnt—--7
o
eriisy
return truey
end?s
rrocadure countsy (X counmnt hors X)
V2T Hegl butes

tedin
g i= rrtr.lendgths
for % 1= 1 to ¢ do besgin
if mot +4+116 then ulé++s
ends
cstert+s
ends
(X
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X)
rrocedure det_rerlus (X try for 3 aueue element %)
bedgin
ForrE; (% & cemashore orerzatinm X}
if rhead <> nil then bedin (¥ check head of rerluy eueue X)
if rtail = rhead then bedin (X last element X)
rtail = niils
fladgl = trues (X enable consumstion X)
erndy
#rtr i1= rhezad - offsets’
thead = rrtr.links?
flag (= trues
end
else flag = falses
voerds
if flad then counts (X count the hors X)
ends
rrocedure det_tasks? (X try for 2 queue element X
var K tutes
begin
w_erdy

if theasd <> nil then begin
if ttz3il = thead then ttzil 1= nils
certr i= thead - offsets
thead = crtr.links’

*
flag = truey
for » = O to R-1 do besgin (X cory {srcrydstr X)
sstrix] 3= crtr.srcixls
detrixd 1= crtr.dstixly
endgs
distance (= 0%
o
else flag (= falses
voFrTdy
ends?
~rocedure rel.resiygs {X Ut BNSWET ON Terls {ueus X))
bedgin
[ = s 37

crtr.link 1= n1
if rtail <> nil

temr = riail offset
temr.link ¢= crtr + offsety
end?

rtail = crtr + offset)
if rhead = nil then rhead (= rtailsy
crtr.lendth = distances
v.erds
ernd?
(X
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X)

~rocedure rel_tasks (X rut {srecsrdst> on task cueue ¥)

bedin

= .Frad?’ :

ertr.link $= nils

if ttzil <> nmil then bedin
temr (= ttzii — offsets
temr.link 1= prtr + offset’

ends

ttail = prtr + offsety

1if thead = mil then thead = ttails

V_oFTas
end?
=rocedure next(srtr)i (X increment address string
rarm setrd ehutes
var
ctreindx? butes
alrhal butes
switch? butes
bedin

indx

while switch do bedin
alrha = setrlindxls
ctr = 03

S T T T N A
WNlle S1FE s FOTLSLOWT

(W]
1
Ly

if ctr = F-1 then slrha =
else 2lrhz = rortsictrt+llds

sertrlingxd 1= 3lrhay

if alrha < ‘A’ or indx = 0 then switech (= false
else indx——3
ends?
engs

I8¢
N

%)



N\
<~ 7

s#rocedure imitizlizes
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(X set-ur ueue structure X)

var Mgl byter
bedgin
for % ¢= 1 to R-1 do last = lastxF;
for X (= 0 to R-1 do bedgin
srcelx] 1= 7A’s
destix] = ‘A’
firstlx] (= ‘A%
ends
for v (= 0 to 6 do bedin
tasklugl.link = .tasklu+l] + offsets
taskiwl.length = 0Os
end?
task[Z73.1link (= nils
taskl7]1.length = 0F
rhead (= .task[0] + offsets
rtail = .taskl[71 4+ offsets
thead = nils
ttzil = nil»
ends

rrocedure sroduces? (X generate {srcrdsty> %)

var x: butes
hegin
for 0 to
rrtr.srelx]d
retr.dstixg
ends

R-1 do bedin
1= srcelxly
i= destixds

® -
* =

(X cory current {srcrdstr> X)

¢
o~

rrtr.lendgth Os

P
=
next(.destlO0]) (X increment destinmation X)

if cmrstr(.destlO0lr.first[0],R) then bhedin
nextl «SirceLscl’ s’ {X incCvemeniv sSouvrce X
stert++y
endy
rstertts
end?’

(X
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Xx)
srocedure consumes (X shortest =ath throusgh Geode X)
var
ctreytmr? butes
enabledrswitch? butes
scharysdechar: butes
begin

enabled = truej

while ensbled do bedgin (X loor til strindgs are ecual X)

if empstr(.sstrfO0])y.dstrL0JyR) then ensbled (= false
else begin

switch (= trues
ctr ¢= O3
{x f1nd €irst locetion where gstir <> dstr X)
while switch angd (ctr < R) do bedin
schar t= sstrlctrls
dchar (= dstrlctrls

if schar <> dehar then switch = false
else ctrtty
endgs

tme ¢= R-15%

(X hor within same cluster X
if dehar <> sstritme] then sstritmel {= dchar

elce hedin (X hor outside locsl cluster %)
switch = trues

while switch do besin
if dchar <»r sstirftmerl then switch (= false
else tme—--3

endy

schar = sstritmrls
sstrltmrl (= dchars

witile tmr < R-1 do bedin

tmEtty
sstritmesl = schary
ends
end?
distance++s ¥ count the hors X)
enrdy
erig?

ends



Consume:

erocedure F_cnis

oracodunrs y_oneg
Froceqyro

-——

const
Fr
F‘\u

B Gl

> w0

vanr
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extern

ot anm
extiern

2l
21

Multi-tasking Consumer

s
?
-
H
7

(X number of rorts rer node X)
(X level of recursion X)

(X structure of cueue elements X}

struct & {
link Br?
length? butes
srcLOIR-11: butes
dstLOIR-11: bytes
]

(X rointers to cueue

thead?: Pword
ttail? @Gword
rhead? CGword
rtai1l? Bword
strd 2x
tems: £{c}

(X lipk to rmext element X)

(X lendgth of a3 traversal X)

(X address of source node X)

(X zddress of destinstion node X)

rointersy
{$56E3)5
{$56ES)5
{$S6E7>5
{$S56EP>5
Fublics
rublicy

(X address strindgs X}

sstrLOtR-11¢ butes
detrfOiR~11! butes

(X variasbless flads

irn rroducer’s address srace X)
(X head of task cueue X)
(¥ tail of task cueue X)
(X head of rerly queue X)
(X t2il of rerlg cueue X)
(X queue rointer X)
{X temrorary rointer X)

(X locél cory of src address X)
(¥ locsl cory of dst address X)

and counters X)

distances: butes (X current length of traversal %)
Tia5e OSLE (¥ UL&SK TiasS—— SV 17 &VEiismie =7
e butes (X temrorary counter X)
~rocedure main sublics
tedgin
loor
get_ tasks (X trg for 3 cueue element X)

if flag then bedgin
for xi= 0 to R-1 do bedgin

(X true if task is avasilsble X

sstrlxl (= Ftresrclxls
dstri:d = pir.dstixds

ends
distarnce = 07
consumes
rel_rerlgs
ends
ends
ends
{X

(X cory the zddresses X)

(X hor from node to node X
(X release the answer X)
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X)
~rocedure sSet_tasks (X det 3 task element %)
bedin

~.CNsS? (X semarhore oreration X)

if @thead <> nil then bedin (X check head of task cueue X)
if Rttzil = Bthead then Bttzil (= nils
tr = Bthead;
Bthead = ptr.links
flag = trues
end
else flag = falses
V_CnsSy (X reset semarhore X)

ends

#rocedure rel_rerlys’ (X release the queue element X)
bedin
=_CNss
- wtr.dink $= nils
if Brtail <> nil then bedgin
temr (= Brtzil;
teme.link = strs
endys
Brtail = stry
if @rhead = nil then Prhead (= @rtzils
~tr.length (= distancey (X return the answer X)
V_Chns?

or.A2
it

srocedure cmerstr(rtrisrtr2ryent)! butes (X comeare strinds X)

~tris Bbhutes

—_d =) A ok o 2

TVl oae CLD ey

cnts butes
bedin

while crt > O do bedin
if Retridd I Retr2dd them returm f2lce
else cnt--3
ends
return trues
ends
(X



X)
~rocedure ccnsumes
var
ctretme?
enabled-switch?
scharsdehar?
tedin
enabled (= true;’

while enabled do besin

if emrstr(.sstrl0lr.dstriOIsR) then enabied

else bedin
switeh
ctr = 0

*

trues

“w {]

-4
N ™ "

itc

s w4t

- -
LA - 22

= -h

while
schar
dehar dstrict
if schar <> dchs
else ctr++s

ends

SW

.ool-' L

=

® -
=

t.my R-1

’

(X hor within
if dchar <

et

same

* -
+ =

Lrues
while switch do
if dechar <> ss
elge tmp—-3
end?

gschar = sstritm
sstrltmel
while tme < R-1
tEt+ts
cstrLtme]
erndgs
ends

* —
M

distancet+s
end?
ends
erds

h and (ctr =
sstrlctrls

sstritme]

sch
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(X shortest rath through Geode %)

butes
butes?
butes

(¥ loor til sstr=dstr X)
i= false

loczts

rls
r then switch (= false

cluster %)
ther sstritmel =

dchar

(X hor outside locz2l cluster XD

bedgin
tritme]

s 4
SwWivl

y

* —
=

then false

19

{= dcharsi

do besgin

-
T3

(X count the hors X)



—boot.?

=auses

~sclk:

~rclhks

s monitor for secondary

ruUb
in
bit
Jr
1d
14
la
ldir
in
it
Jr
call
JF

¥y start
Fub
Id
out
14
out
out
14
out
io
out
out
ret

i read resl-time clock

PUD
1d
cut
1d
in
1d
Je
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APPENDIX C: Z80 UTILITY PROGRAMS

-boot

3r (Ob4h)
793
Zy_boot
der1000h
hl+,5000hn
DCy 400N

3y (Ob4h)
73
ZyF3Use
1000h
oh

rezl-time clock

~scik
ay36h
(Oefh)sa
3r0N
{(Cech)ra
(Oech) sz
a3y76h
(Oefhlra
SO0
(Oedh) sz
(Oedh)sa

~rclk
as0Oh
(Qefh)sa

(1700h) s
2y (Qech)
(1701h) s

8h

rrocessor

yread the semarhore
stest bit 7

skeer testind until
sdst rointer

isrc rointer
rcounter

sblock move

sread the semarhore
rtest bit 7

sheer testing until
senter new routine
iget another one

scounter 0y mode 3
iset mode
siclear A
¢1lsb

smsb
scounter 1y
rset mode

mode 3

atch counter O
et mode

- S
Swr

sh

(R}
is
|
T &
smove to memory
im
smove to memory
T

estart the monitor

flir/flor

it’s set

flir/flor

it’s set



_F_prai

—v.erds

~F_CMNsS ¢

_v_cns:

b
in
bit
Jr
ret

~ub
id

out
ret

b
in
bit
Jr
ret

»ub
1d

out
ret

_F_Frd
a3y (0f4h)
793

Ty..P_FTG

~V.Frd
3sy0h
(0f4h) s

-F_CNns
3y (0b4h)
73

= _F..COhS

-v_.cns
ar0h
(Ob4h) s

80

srezd the semarhore flis/flor
stest bit 7

rheer testing until it’s set

sclear the sccumulator
sreset the semarhore flir/flor

sread the semarhore flir/flos
stest bit 27
skeer testing until it’s set

fclear the accumulztor
sreset the semarhore flir/flor
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