
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1982

A multi-microcomputer intercommunication
structure and multi-tasking algorithm
Barry A. Andrews
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Andrews, Barry A., "A multi-microcomputer intercommunication structure and multi-tasking algorithm " (1982). Retrospective Theses
and Dissertations. 8327.
https://lib.dr.iastate.edu/rtd/8327

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8327?utm_source=lib.dr.iastate.edu%2Frtd%2F8327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duphcating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing ihe pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of "sectioning" the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to righr i" equai cec'onf: wirh smaii overians. If necessary,
sectioning is continued again-beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

T y* oil r"iCOC fit A Acf
l i t (l i i y VCAl 11^ 1 4 V 11VI .TV U à VA*.*» ' www» .

available copy has been filmed.

UniversiV
Micronlms

inbemadonai
300 N. Zeeb Road
Ann Arbor, Ml 48106

www.manaraa.com

www.manaraa.com

8307730

Andrews, Barry A.

A MULTI-MICROCOMPUTER INTERCOMMUNICATION STRUCTURE AND
MULTI-TASKING ALGORITHM

Iowa State University PH.D. 1982

University
Microfilms

I n t6rn atlO n 3.1 300 N. Zeeb Road, Ann Arbor. MI 48106

www.manaraa.com

www.manaraa.com

PLEASE NOTE;

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages

2. Colored illustrations, paper or print

3. Photographs with dark background

4. Illustrations are poor copy

5. Pages with black marks, not original copy

6. Print shows through as there is text on both sides of page

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements

9. Tightly bound copy with print lost in spine

10. Computer printout pages with indistinct print

11. Page(s) lacking when material received, and not available from school or
author.

12. Page(s) seem to be missing in numbering only as text follows.

13. Two pages numbered . Text follows.

If. y aiiu wMiir\icu pay^o

15. Other

University
Microfilms

international

www.manaraa.com

www.manaraa.com

A ûiulti-microcomputer intercoûiiriunication

structure and multi-tasking algorithm

by

Barry A. Andrews

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Approved:

In Charge of Major Work

îr Department

For the Graduate College

Iowa State University
Ames, Iowa

1982

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

TABLE OF CONTENTS

Page

INTRODUCTION 1

TECHNOLOGICAL OVERVIEW 6

Illiac IV 6

X-tree 9

Pruned Spanning-bus Hypercube 11

Cm* 12

Remarks 12

GEODE STRUCTURES 20

Properties of Geodes 20

Geode Addressing ' 24

Geode Traversais 25

Geode Performance 28

Practical Considerations 30

Implications 32

MP: A STRUCTURAL ELEMENT 34

Communication Bus 34

Internai Architecture 35

Deadlock 37

Z80 Microprocessor Implementation 40

www.manaraa.com

iii

MULT I-TASKING SOFTWARE 48

Experiments 52

CONCLUSIONS 59

BIBLIOGRAPHY 63

ACKNOWLEDGEMENTS 65

APPENDIX A: TRAVEL PROGRAM 65

APPENDIX B: PORTAL PROGRAMS 67

Unipro: Uniprocessor Version 67

Produce: Multi-tasking Producer 70

Consume: Multi-tasking Consumer 76

APPENDIX C: Z80 UTILITY PROGRAMS 79

www.manaraa.com

iv

LIST OF TABLES

Page

Table 1. Average Path Length 29

Table 2. Experimental Results 57

www.manaraa.com

V

LIST OF FIGURES

Page

Figure 1. I Iliac IV Structure 7

Figure 2. X-tree with 15 Elements 10

Figure 3. Pruned Spanning-bus Hypercube 11

Figure 4. Three Four-port Geodes 21

Figure 5. Various Geodes 22

Figure 5. Geode Addressing Method 24

Figure 7. Average Path Length: Geode vs. X-tree 29

Figure 8. (4,2) Geode with Central Supernode 33

Figure 9. Generalized Shared-bus Structure 35

Figure 10. Internal Structure of a Processor 37

Figure 11. Cycle of Three Processors 39

Figure 12. MP with Unidirectional Ports 41

Figure 13. MP with Bidirectional Ports 42

Figure 14. 280 Processor Port 45

Figure 15. Z80 Memory Port 45

Figure 16. Remainder of MP Circuitry 45

www.manaraa.com

1

INTRODUCTION

This document describes research performed for a Ph.D. in

electrical engineering at Iowa State University, in the

computer systems area. The main accomplishments are:

1. The invention of a new structure, which can

be used as an interconnection topology for

multi-microcomputer systems, and possibly

for other applications.

2. The design of a microprocessor-based element

which can be used in such multi-microcomputer

structures, with LSI and VLSI technology.

3. The completion of a series of experiments

with a multi-tasking software system, which

provides some insight into the design and

Opt:jL ct'CJ.Oil ûj;! —rfiiClTOCOuipu. ucxT SyS'tcrTtS,

In the past decade, the interconnection of large numbers

of microprocessors to form a multi-microcomputer has become an

increasingly attractive prospect. Several authors have

described topologies which would permit a set of nodes,

(computers or computer busses) to be linked together by means

of communication channels, into a multiple instruction stream,

multiple data stream, (MIMD) architecture

(1,8-10,12,13,15,20).

www.manaraa.com

2

The key is to find an efficient way to utilize identical,

mass-produced microcomputers in a large system. Such a

computer could solve many separate tasks simultaneously,

realizing an almost linear increase in processing power as the

number of nodes increases. If microprocessors can be used in

this fashion, then arbitrarily large and powerful multi-

microcomputers could be constructed.

Such machines could be used in conventional

multiprogramming environments, to replace expensive mainframe

computers in general-purpose applications. However, an even

greater potential may exist in special applications which have

generally required multi-million dollar supercomputers.

Current supercomputers are not only expensive, they are also

very heavily utilized. Many applications are not being

pursued because the necessary computer time is not obtainable

at a reasonable cost -- the available resources being reserved

for high priority areas such as fusion research (3,7,9,17,19).

Most such applications involve complex systems of

equations which can be handled by parallel/pipelined machines

such as the Cray-I or CDC 205. However, in many cases it may

be possible to recast such problems so that they can be broken

down into a collection of tasks, which can be executed in

parallel by a collection of cooperating uniprocessor^.

Provided that suitable control and communication

mechanisms can be devised, it seems likely that an MIMD

computer, based on microcomputers, could perform such

i
I

!

1

I

www.manaraa.com

3

computations. As each processor completed its assigned task,

its results would be communicated to neighboring processors,

so that all the results could be combined into a global

solution. If such a computer could be implemented, then many

costly, computationally intensive problems would be within the

reach of systems costing one-tenth to one-hundredth as much as

current supercomputers. The availability of large amounts of

inexpensive computational power would be extremely beneficial

in many research areas and applications, such as the

following:

1. Seismology.

2. Cosmology.

3. Aerodynamics.

4. Meteorology.

5. Nuclear physics.

6. Signal processing.

7. Tomography.

8. Patrern analysis.

9. Artificial intelligence.

The global weather problem is a classic example. One may

imagine that the earth's surface could be sub-divided into

hundreds or thousands of sectors, with a separate

microcomputer assigned to process the data acquired from each.

A global solution of such problems would require the sharing

of information across sector boundaries, so that interactions

between sectors could be resolved -- for example, the effect

www.manaraa.com

4

of a low-pressure area in Montana on wind velocity in

Minnesota. Analysis of such boundary conditions requires

communication facilities, which would be provided by the

interconnection structure of the multi-microcomputer "topology.

If such an architecture is to be used in this type of

problem solving, then better performance could probably be

obtained if the interconnection structure maps into the nature

of the problem. For instance, Illiac IV was a two dimensional

processor array, well-suited for the solution of matrix

problems. Perhaps such a two dimensional structure would be

appropriate for the weather problem, or other surface effects,

while a one dimensional array, (chain) would be more efficient

in spectrum analysis, and a three dimensional structure would

be applicable to large spatial problems, such as those found

in nuclear physics and cosmology.

In all cases, it is assumed that a well-designed

microcomputer could be replicated and interconnected in

different structures to fit various problems. In this way, a

mass-produced microcomputer could drastically reduce the cost

of computations, while increasing throughput. If limiting the

architecture to one type of processor resulted in some

processor-dependent inefficiencies, then more processors could

be added to compensate, without a major redesign of the

system. If regular structures proved inappropriate for some

algorithms, then more processors could be added at specific

critical areas, to form a structure which maps into the

www.manaraa.com

problem -- again, using the same basic processor.

However, other computationally intensive problems, or

applications requiring many special functions, could use

structures of special purpose processors. Such microcomputers

would probably be more expensive than a common, general

purpose design, but many applications would justify the extra

cost as a tradeoff for increased performance.

The remainder of this paper will include a short overview

of multi-microcomputer systems, followed by three main

sections. The first section will describe the Geode

interconnection topology, which permits variations in

dimensionality and processor concentration. The second

section will present a structural element which can be used to

construct multi-microcomputer systems like Geode, X-tree,

hypercubes, trees, stars and so forth, using LSI or VLSI

technology. Finally, the third main section will present a

multi-tasking software package, which seems generally

applicable to multi-microcomputer systems. This section will

also discuss some experimental results obtained with the

multi-tasking programs.

www.manaraa.com

6

TECHNOLOGICAL OVERVIEW

This section is intended to provide an overview of

multiple microcomputer systems, rather than an exhaustive

review. Therefore, several worthy proposals or

implementations will be discussed only in passing, or not at

all. Many good reviews have been published, and the

interested reader is urged to consult the bibliography at the

end of this paper. The proposals and systems described here

are IIliac IV (3), X-tree (8), Cm* (12), and the "Pruned

Spanning-bus Kypercube," or PSBH, (20). Collectively, these

four cover most of the general ideas behind multi-

microcomputer systems.

Illiac IV

Illiac IV WdS chosen because it was one of the first

computers designed to use multiple identical processing

elements, organized into a physical structure which maps into

the logical struccure of certain problems, i.e. discrete

elements. Also, Illiac IV was actually built and operated --

yielding valuable insights into the nature of large

multiprocessor systems.

The Illiac IV structure was a square array of 64

elements, as shown in Figure 1. As originally proposed, it

would have been implemented with four 64-node arrays organized

into a 15 by 16 structure; however, only one 8 by 8 array was

actually built. The edge-links shown in Figure 1 were

actually interconnected in a wrap-around fashion.

www.manaraa.com

7

Figure 1. IIliac IV Structure

IIliac IV differs from most proposed multi-microcomputer

structures in that its processing elements, (PEs) were

c 7 fv» vz-ws 4 fy A/4 /-• ^ 1 T o O "i v» /"v 1 ^ c i /— a f

instructions. In a given instruction cycle, a PE either

executes the instruction on its local data, or it remains

idle. This is frequently described as a single instruction

stream, multiple data stream, (SII»ID) architecture.

www.manaraa.com

8

In contrast, multi-microcomputers would likely be

implemented as MIMD architectures. This could permit greater

concurrency than an SIMD arrangement, since each element would

operate independently, and would not need to enter idle states

while other processors executed special functions.

However, an MIMD array processor would probably be more

complex than a corresponding SIMD machine, for several

reasons. Obviously, a separate controller would be needed for

each processor. The need for a sophisticated control and

communication mechanism for the entire structure would also

introduce many additional problems.

On the other hand, an MIMD machine might have advantages

in addition to greater concurrency. Greater flexibility would

be one likely characteristic. MIMD systems would allow a set

of related tacks to execute in parallel on a subset of the

available processors, while independent tasks or other

collections of related tasks were handled by other elements.

Thus, an MIMD computer could be very useful in general purpose

timesharing, batch and multi-tasking environments, giving it a

greater potential for utilization, in a high-level sense.

An MIMD machine should also be somewhat cheaper to

implement than an equivalent SIMD computer, using modern VLSI

technology. This factor is related to flexibility and the

potential for general purpose utilization. The fixed

structure of an SIMD computer might limit its useful PE

configurations. An MIMD element could be used alone, or in

www.manaraa.com

9

small collections, or in many different configurarions,

because each would be an independent computer. This kind of

flexibility could lead to much greater production volumes than

for SIMD elements, resulting in reduced costs to users.

Finally, the increased complexity of the MIMD approach is

not the obstacle it was in the 1960s. VLSI circuits are now

being fabricated with over 100,000 transistors on a single

die. Circuits with over one million elements may be practical

by 1985, allowing the implementation of a 54-bit processor, a

significant amount of local memory or cache, and a

communication structure on a single integrated circuit.

X-tree

Most recent proposals for new computers, both

uniprocessors and multiprocessors, seek to take advantage of

the improvements in circuit speed and complexity offered by

VLSI technology. X-tree is one such proposal which has drawn

considerable interest, due to the combination of vr.sT nodes

into a tree-like structure. Figure 2 shows a 15-element X-

tree.

The X-tree proposal calls for nodes comprised of a main

processor with a collection of specialized communication

processors on a shared bus, to be interconnected by means of

8-bit bidirectional communication links. The main processor

would handle computation while the communication processors

handled network functions like queueing and routing.

One X-tree application would have users or devices

www.manaraa.com

10

associated with the leaf nodes, while the higher level nodes

handled interaction between leaf node processes, as with

shared data base operations. The unused links at each leaf

node could then be used for I/O interfaces to peripherals such

as terminals or disks. In this way, X-tree structures could

be configured for operation in general purpose timesharing

environments, or as special purpose backend processors,

possibly handling relational database operations.

Figure 2. X-tree with 15 Elements

www.manaraa.com

11

Pruned Spanning-bus Hypercube

The Pruned Spanning-bus Hypercube proposal, as depicted

in Figure 3, has much in common with X-tree, in that VLSI

microcomputers would share busses, and be interconnected to

form regular structures. However, the PSBH elements would all

be identical, with computation and communication tasks

distributed uniformly among the nodes. The shared busses

would be the only communication media present in the system,

so specialized communication processors or interfaces would

not be required. Thus, a typical PSBH structure could be

constructed using identical VLSI elements, each with two or

more bidirectional communication ports.

/

Figure 3. Pruned Spanning-bus Hypercube

www.manaraa.com

12

Cm*

Cm* is another design which has actually been in

operation for some time. Cm* uses a hierarchy of busses and

memories to interconnect conventional LSI-11 and PDP-11

computers, using memory mapping techniques. Experiments with

this system have shown that algorithms can be executed as

parallel tasks on an MIMD machine, with an almost linear

speedup as nodes are added.

Cm* has also demonstrated the value of the principle of

locality to the efficient execution of cooperating tasks.

Simply stated, locality in this context means that tasks which

are related should be located in clustered groups of nodes, so

that communication delays will have a minimal impact on the

speed of computation.

However, Cm* uses several different types of bus

interface and memory mapping units, so it probably would not

be cost-effective when compared to X-tree, PSBH and other

proposed structures which are more regular, and which call for

mass-produced VLSI elements.

Remarks

Not too long ago, approaches like X-tree, Cm* and PSBH

would have probably been thought foolish, because the doctrine

of economy of scale would have dictated larger computers

instead of more computers. That is, until fairly recently, it

was more cost-effective to make or buy one large computer

instead of several smaller ones. However, such a philosophy

www.manaraa.com

13

may now have been replaced by the principle of "economy of

volume". That is, computers implemented with many identical

VLSI microcomputers are more cost-effective than computers

built with high-speed gate-level integrated circuits, or with

many diverse VLSI units.

Eventually, a limit in circuit size and density may be

reached, so that VLSI circuits larger than a maximum size

would not be cost-effective. The limits could be related to

problems with decreasing yield, lower reliability, higher

operating temperature, or simply a limit in complexity which

makes circuits of too large a size inconvenient to design.

Limits of this type are now being encountered with large

uniprocessors. These factors should be enough to suggest that

multi-microcomputer systems, like those described above, have

considerable potential in applications which require large

amounts of computing power.

The structures of computing elements proposed so far take

two forms -- bus-oriented and link-oriented. Broadcast

systems are similar to bus-oriented systems, but proposais for

broadcast-oriented multi-microcomputer systems have been

limited to local data networks. For present purposes, bus and

broadcast systems will be considered essentially identical.

Of the three MIMD structures described above, all are

bus-oriented, in that all processors are connected to a shared

bus, at least within each node. In the case of X-tree, the

bus is not used for extranodal communication -- with 8-bit

i

www.manaraa.com

14

bidirectional links suggested for that function. Thus, X-tree

seems more like a network than a multiprocessor, with the

distinction less clear in the cases of PSBH and Cm*.

When information is transferred from one place to another

in a computer system, it is actually being transferred from

one area of memory to another, regardless of the intervening

mechanisms or media. The information may be moved a word at a

time, by means of random-access memory operations; however, it

may also be organized into buffers, packets or messages, and

transferred by means of communication channels in bit-oriented

formats.

In memory systems, we think of transfers involving a

certain number of address, data and control signals, which are

used in each operating cycle. In the case of communication

links, we usually think of a conductor by which information is

transmitted and received, with address, data and control

information imbedded in messages or packets, instead of being

expressed as separate signals. In either case, the message is

placed in a communication channel, along with enough

information to describe the transfer -- perhaps its source,

destination, and the number of words to be moved.

For example, let us consider a 32-bit computer connected

to a bus with 32 data lines, 32 address lines, and ten control

lines for bus and memory access. The bus requires 74

conductors, which must all participate in the transfer of 32

bits of information in a single cycle. Thus, a transfer of

www.manaraa.com

15

two memory words would require the activation of 148 signals,

while a 256-word transfer would need 18,944 signals.

Let us assume that the same 32-bit computer is also

connected to a high-speed serial communication link, which has

the same bandwidth, in bits per second, as the bus. In other

words, the link could transfer 32 message bits in the time

required for a single bus operation. The link would require a

protocol and a message format to control the transfers; so,

let us assume that 100 bits would suffice for routing and flow

control fields. Then, the transfer of two memory words would

require 164 signals, compared to only 148 for the bus, and the

message would require over 2.5 times as long to transmit.

However, a 256-word transfer would be far more efficient,

requiring only 8,292 communication signals, and about 1% more

time.

This example illustrates that memory bus implementations

are more efficient for short transfers, while communication

links are preferable for long messages. The tradeoffs are

actually more complicated, both in cost and in speed. For

example, it may be inappropriate to assume that a

communication link could have 32 times the clock rate of a bus

implemented with the same basic technology. However, the main

point is that one approach is not inherently superior. The

choice depends on the application, which determines the

required communication bandwidth. Again, this suggests that

multi-microcomputer structures should be designed to suit

www.manaraa.com

16

particular applications, or ranges of applications, if the

structures already proposed are unsuitable.

As mentioned above, communication in both bus- and link-

oriented systems is basically a matter of moving information

from one memory area to another. The information content of a

message can be separated from the physical operations involved

in a transfer. Therefore, the data structures used in the

memories may be the same, regardless of whether communication

links or direct transfers are involved. This is a desirable

characteristic, since it permits systems to be implemented in

a modular fashion.

One logical communication technique, useful for both bus-

and link-oriented systems, is to set up a queuing structure in

memory for each process or processor. A process or task

consists of a code segment, which performs a series of

operations on an input data segment, producing an output data

segment. Therefore, it would seem natural to provide an input

queue and an output queue for each processor. If more than

one task executed on a given processor, then multiple queueing

structures could be organized.

Then, communication in a multi-microcomputer system can

be reduced to a set of processes, and a set of queuing

operations, which represent the input and output functions of

the processes. The processes could be said to be in

communication when the output set of one intersects the input

set of another. For example, a pipelined system would consist

www.manaraa.com

17

of a chain of processors, linked by queues. The input queue

of each element would be the output queue of its predecessor

in the chain. Organizations with greater parallelism would

involve processors linked by more complicated, parallel

queueing structures.

So, the difference between bus- and link-oriented systems

can be regarded as purely physical. The operations and data

structures may be the same, but link-oriented systems have

mechanisms which carry cut data transfers, through some

intervening medium, from the address space of one bus to

another. The bus-oriented system merely has an intersection

between two or more address spaces, with direct transfers.

In either case, some type of partition separates local

memory areas from one another. The link-oriented system uses

communication controllers, coaxial cables, and so forth. The

bus-oriented system uses three-state transceivers and

arbitration logic to determine which processors are connected

to a given bus at a given time. The effect is to isolate

processors from one another to avoid memory contention, for

the purpose of efficient computation. Contention is a problem

only when the processes are in communication -- when a

processor or some intervening device attempts to access a

memory at the same time as another processor, delaying one of

them while the other completes its operation.

This is where the principle of locality plays an

important role. If a multi-microcomputer is designed to

www.manaraa.com

18

perform some large computation, then that computation will

execute faster if its processors spend most of their time

performing operations in their local memory areas. Accesses

outside the local area imply that communication is taking

place. If processors spend most of their time communicating,

then they will have few cycles available for computation. In

other words, if a multi-microcomputer system is to replace a

large uniprocessor, then the multi-microcomputer system will

be much more effective if its tasks are not communication

bound.

Any factor which tends to increase the communication load

on the processors, such as large messages with relatively few

operations to be performed on them, or large numbers of small

messages, or inefficient data transfer techniques, will reduce

the computational effectiveness of the system. On the other

hand, some large problems are naturally I/O bound, such as

telephone switching or data acquisition. The multi-

microcomputer should be as effective as a uniprocessor in such

cases.

In summary, multi-microcomputer systems could function

effectively in the solution of large computational problems,

if suitable microcomputers could be implemented with VLSI

technology. The computational problem would be divided into

tasks, to keep all the processors busy. More than one problem

could be handled by assigning a subset of the available

processors to each collection of tasks. The system memory

www.manaraa.com

19

should be partitioned so that processors do not slow each

other through contention. A queuing structure is needed, so

that the processors may communicate by chaining outputs to

inputs. Finally, the amount of time a processor uses for

communication limits the time it has available for

computation; so, the amount of communication should be

limited, and efficient methods should be used, if many

processors are to be utilized effectively.

The next major section describes a new multi-

microcomputer structure, which is related to X-tree and PSBH.

The similarity is only general, since this structure is

neither a tree or a hypercube. It is a structure based on

recursion and geometric symmetry.

www.manaraa.com

20

GEODE STRUCTURES

The structured architecture described in this section has

been labelled "Geode," as a name for both an interconnection

topology and a proposed computer system. The name is a

combination of the words "geometry" and "node." Geodes may be

regarded as data structures, formed by recursively organizing

a directed graph in a symmetrical fashion. The resulting

collection of nodes and links is geometrically organized into

polygons, or even polyhedrons, varying with the number of

communication ports available at a node.

Figure 4 shows three Geodes, each based on nodes with

four ports. The single node on the left is the basic unit of

implementation for all 4-port Geodes. Therefore, the position

of a node in a structure is its only distinguishing feature.

The three Geodes obviously differ in complexity, and it should

be apparent that Geodes of higher complexity are constructed

from lesser Geodes. In fact, Geodes can be recursively

extended to any size. Asymmetrical structures can. also be

constructed, but this paper will deal primarily with

symmetrical Geodes and their basic characteristics.

Properties of Geodes

The recursive, geometrical and symmetrical properties of

Geodes allow arbitrarily complex multiple computer structures

to be modelled, and traversed from node to node, using a very

simple routing algorithm. This algorithm could be used to

control communication within such structures.

www.manaraa.com

21

Since a routing program will be presented in subsequent

paragraphs, let us briefly describe the parameters required

for a Geode traversal. These are:

1. Source address.

2. Destination address.

3. Number of ports per node.

4. Level of recursion (complexity).

a
(4 ,0)

(4 ,1)

(4 ,2)

Figure 4. Three Four-port Geodes

The first two parameters -- the addresses of the source

and destination nodes, use a recursively-ordered addressing

scheme over the full structure. This implies that the

position of a node can be inferred from its address, and that

the node can use its own address to determine the addresses of

other nodes connected to its communication oorts.

www.manaraa.com

22

Thus, the addressing scheme is fixed and global, providing

each node and its communication ports with unique

identifications, which are known to the node and its

neighbors.

The third and fourth parameters are "P" and "R"; the

number of communication ports per node, and the level of

recursion, respectively. To simplify discussion, a tuple will

be used to identify symmetrical Geodes, based on P and R. The

tuple will have the form (P,R). So, a Geode with a P-value of

four and an R-value of three would be called a (4,3). Figure

5 depicts Geodes with 2, 3, 4 and 5 ports per node, at various

levels of recursion.

o-o-o-o
(2 , 2)

(3,3)

(5,1)
(4,2)

Figure 5. Various Geodes

www.manaraa.com

23

Using a recursive definition, a Geode with an R-value of

X, for X greater than zero, is comprised of "clusters," where

the clusters are defined as Geodes with R-values between one

and X-1. For example, a (4,1) is formed by connecting four

4-port nodes to each other. Each node is connected to P-1

neighbors, and has one communication port left over for

external connections. Thus, the (4,1) has four unconnected

ports, like a single node, and it can be directly substituted

for any node or cluster in a four-port structure. Such

substitutions can give rise to asymmetrical topologies, where

some nodes are more "concentrated" than others.

Given the parameters P and R, one can construct an

appropriate symmetrical Geode. As shown below, these

parameters can also be used to describe several general

characteristics of symmetrical Geodes:

N = P**R.

The total number of communication links (T):

T = (P**(R+l)+P)/2.

The number of internal communication links (I):

I = (P**(R+l)-P)/2.

The maximum distance (M) between any two nodes:

M = (2**R)-1.

www.manaraa.com

24

Geode Addressing

The Geode addressing scheme uses base P numbers to

identify the nodes, and to enumerate the communication ports.

Figure 6 depicts a (4,2) with the nodes and ports fully

identified. The addressing technique follows the recursive

definition. Basically, nodes or clusters are aligned in

geometrical patterns, and a base P number is used to identify

each position in the structure. A node address has R digits,

one for each level of recursion. An address digit describes

the position of a node in a cluster, or the position of the

cluster in the next higher-order cluster, and so forth.

1 BD AD BC

Figure 6. Geode Addressing Method

www.manaraa.com

25

Construction of a Geode is begun by labelling the ports

of each node in a consistent fashion, so that all nodes are

identical. The port addressing scheme must be known to the

nodes, so that a selection can be made by a routing program,

which is also identical for all nodes. In the examples

presented here, alphabetical characters will represent base P

numbers, so that three-port Geodes would use letters A, B and

C as port addresses.

The second step is to connect the ports of the nodes

together, so that the 'A' port in the 'B' position connects to

the 'B' port in the 'A' position, and so on. As a consequence

of this strategy, the P "left-over" links of each cluster

correspond to the position of the nodes where they are found.

For example, the A-node has an unconnected A-port, and the C-

node has an unconnected C-port. The resulting Geode is then

logically equivalent to a single node. Thus, structures can

be connected to each other, or they can be internally expanded

to any size, with no basic changes in the address assignments

of the components. As each new level of recursion is

implemented, an extra digit is added to the beginning of each

node address, to identify its parent cluster.

Geode Traversais

The PL/1 program TRAVEL, shown in Appendix A, is a simple

program which traverses symmetrical Geodes. The source

address is specified in the string SRC, and the destination

address is held in DST. The variable R is the level of

www.manaraa.com

26

recursion, and it determines the length of the address strings

-- one character per level. TRAVEL will handle Geodes with

any number of ports, up to the limits of the PL/I character

set, as long as the characters in the SRC and DST strings

represent base P digits. No tests are performed to verify the

correctness of addresses.

This version of TRAVEL performs only one traversal, using

the initialized values of SRC, DST and R. However, the

program can be modified to perform many traversais, and to

count the number of hops in each. In this way, the average

distance between nodes can be computed, for any symmetrical

Geode. The program could also be adapted to simulate Geode-

based computer systems.

The main routine invokes the function NEW iteratively,

until it returns false ('O'B). The current node (SRC) and the

last output port (TCHAR) are printed at each iteration. NEW

invokes PORT to get the output port ID. This character is

then used in the generation of the address of the node at the

other end of the output link. NEW hops from node to node in

this fashion until PORT returns an exclamation point in the

variable TCHAR.

PORT compares the SRC and DST strings until it finds the

highest-order DST character which does not match the

corresponding character in SRC. The DST character is returned

as the output port ID, unless the strings match. If SRC=DST

then the traversal is finished.

www.manaraa.com

27

NEW must find the lowest-order character in SRC which

does not match the port ID. It then replaces all lower-order

characters in SRC, using this as a replication constant. The

replication character is then replaced by the port ID. This

transposition is accomplished with a concatenation operation

and a built-in REPEAT function. If the lowest-order character

in SRC does not match the port ID, then only this character is

changed, corresponding to a hop within the same first order

cluster. Otherwise, the new SRC address will represent a hop

to a neighboring cluster.

PORT is the basis for "real" routing algorithms, which

might be used to switch messages through Geodes. Each node

would use PORT to determine the appropriate output link to any

other node. It would then transmit a message, packet or other

data representation through the port. The process would be

repeated at each node, until the message reached its

destination.

This type of fixed routing algorithm can easily be

implemented in software, firmware or combinational logic.

However, fixed routing schemes are not suited for fault-

tolerant systems, because the entire system could be disrupted

by a single node or link failure. Therefore, a more pragmatic

approach might be to use the algorithm merely to initialize

routing tables in each node. Failures or traffic congestion

could then be handled by dynamically modifying the tables, to

switch communications onto alternate paths.

www.manaraa.com

28

Geode Performance

The average distance between nodes in a multiple computer

architecture is of considerable importance if random

traversais are frequently attempted. This could be the case

in a general purpose system which used the communication links

for interprocessor synchronization, and for access to a

distributed data base.

The average path length in several symmetrical Geodes was

computed, using a variation of the TRAVEL program. The

results of the computations are shown in Table 1. The

following information is presented:

1. Number of ports per node (P).

2. Level of recursion (R).

3. Total number of nodes per structure (N).

4. Total number of links per structure (T).

5. Maximum path length (M).

6. Ave. path length, with SRC-SRC traversais (AVEl).

7. Ave. path length, without SRC-SRC traversais (AVES).

Two values are given for the average path length. AVEl

includes a zero-length traversal from each node in a structure

to itself. AVE2 does not include such traversais, because

o uion appears meaningless. However, sirfiilar path

length computations have been performed for X-Tree, using

zero-length traversais in the calculations of average path

length. Therefore, AVEl is used to compare Geode and X-Tree,

as shown in Figure 7.

www.manaraa.com

29

Table 1. Average Path Length

p R N T M AVEl AVE2

3 2 9 15 3 1.78 2.00
3 3 27 42 7 3.93 4.08
3 4 81 123 15 8.20 8.30
3 5 243 366 31 11.16 11.20

4 2 16 34 3 2.06 2.20
4 3 54 130 7 4.64 4.71
4 4 256 514 15 9.78 9.82

5 2 25 65 3 2.24 2.33
5 3 125 315 7 5.09 5.13
5 4 625 1565 15 10.78 10.80

8 2 64 260 3 2.52 2.56
8 3 512 2052 7 5.78 5.79
8 4 4096 16388 15 12.32 12.32

r 10

9

8
D /

7

6

5

4

8 X-tree
û 3-port
• 4-port
A 5-port
o 8-port

3

2

1
10 100 1000

Figure 7. Average Path Length: Geode vs. X-tree

www.manaraa.com

30

The two architectures seem very close when a fully-ringed

X-Tree, with five ports per node, is compared to symmetrical

four- and five-port Geodes. However, the slopes of the curves

differ. It is interesting that a four-port Geode is both

faster and less complex than a fully-ringed X-Tree with small

numbers of nodes, (N < 20) while X-Tree appears to outperform

five-port Geodes when large structures are considered, (N >

1000).

Practical Considerations

Average path length is one important consideration in the

design of structured multiple computer systems. However, the

difference between Geode and X-Tree is not very great, for

5-port nodes; so other factors may be more important.

Structured architectures could readily be used in simulators,

in general-purpose computers, and in special-purpose machines

such as pattern-recognizers, relational database processors,

and intelligent automata. Therefore, implementation and

applications problems probably deserve some consideration.

One may assume that nodes for any structured architecture

could eventually be fabricated on a single VLSI chip. Such a

microcomputer could include CPU(s), memory, user-I/0 and DMA-

based controllers for interprocessor communications. The

links could be implemented in a variety of ways, with either

serial or parallel data transfers. Such choices will depend

on the bandwidth requirements, and may require careful

analysis of various applications.

www.manaraa.com

31

One immediate observation is that less-complex chips will

be cheaper and easier to produce. Nodes with four ports can

be more readily implemented than 5-port nodes. Therefore, it

would appear that four-port Geodes have a clear advantage over

fully-ringed X-Trees, which require 5-port nodes.

One of four ports can be addressed with only two bits,

compared to three for one of five ports. Thus, any address in

a (4,4) can be represented with a single byte, allowing 255

processors to be addressed very conveniently. This factor can

reduce the complexity of internal node architectures, and it

can speed-up communication because the address fields in

messages would be expressed more efficiently.

Also, port selection and message routing are very simple

procedures for Geodes. This factor could result in reduced

complexity and better performance, regardless of the number of

ports or the level of recursion.

Clustering is another factor which can improve

performance in the execution of concurrent tasks. Processors

which are closely-connected can communicate faster than those

which are far apart. Therefore, if the tasks of a job are

executed on processors in the same cluster, the average

communication bandwidth should improve, compared to randomly-

located tasks. Geodes can easily take advantage of this

principle of locality, because they are clustered by

definition.

www.manaraa.com

32

Implications

Structured architectures are one way to increase the

power of computer systems at a very low cost. If all nodes in

a structure are identical, at least in hardware, then a VLSI

processor could be mass-produced, implementing most of the

architectural features on a single chip. Structures like X-

Tree or Geode could then be expanded to extraordinarily large

sizes.

Many problems must be solved before structured systems

become a reality. It has not been demonstrated that a large

system can function without centralized control. If not, then

perhaps "supernodes" should be added to the structures.

Figure 8 shows a (4,2) Geode with a central supernode,

which is also implemented as a Geode. Structures of this type

could be used for applications where a main task, requiring a

high processor concentration, coexists with several peripheral

tasks, which are less computationally intensive. Such a model

corresponds roughly to the functions of the fovea and

periphery of the human retina. Therefore, this type of

organization might be useful in artificial vision.

This illustrates that the efficiency of various

topologies could be extremely dependent on the applications.

The required link bandwidth for interprocessor communications

has not been established. Some of the nodes or links in a

given structure may constitute bottlenecks, depending on the

structure and the application. Finally, problems like task

www.manaraa.com

33

synchronization, resource management, and interprocessor

communication need much more attention. It is hoped that the

unique characteristics of Geode architectures will make such

problems more manageable.

Figure 8. (4,2) Geode with Central Supernode

The next section describes a unit of implementation for

structured architectures like X-tree, PSBH and Geode. This

processing element, utilizing only two communication ports per

processor, appears to be the "lowest common denominator" for

such structures.

www.manaraa.com

34

MP: A STRUCTURAL ELEMENT

The Geode structures described above represent only one

of many classes of multi-microcomputer structures. X-tree and

PSBH are two others. Such proposals are reasonably general,

in that the methods for implementing and interconnecting nodes

are not specified in detail.

The following paragraphs describe a design for a general

purpose processing element, which can serve as the basic unit

of implementaiton for the nodes and links of essentially any

structure. This element, called an MP, (for multi-processor

or memory-processor) uses two identical communication ports,

to ease the connectivity and pin-out problems encountered in

VLSI designs.

Nodes are formed by attaching one port of each MP to a

local shared-bus, for intranodal communication. The remaining

port of each MP is used for internodal communication. Either

parallel memory-bus implementation will be described here.

Communication Bus

A bus is a collection of conductors which can be shared

by a number of active devices, like computers or communication

controllers. Passive devices such as memories may be

connected to a bus for the use of the active devices.

However, only one active device can use a bus in a given

cycle. Consequently, at least two capabilities are required

of each active device or processing element.

www.manaraa.com

35

First, a method is needed for connecting and

disconnecting units from a bus, in response to a request for a

bus cycle. Logic gates which can be enabled and disabled,

such as open collector or three-state devices, are required

for such purposes.

Secondly, a method is required for recognizing the bus

requests of several devices, and for granting the bus to them

in a sequential order. That is, only one device can be

enabled at a time. Priority arbiter circuits, like the 74148,

are suitable for this role. If system memory is divided into

several distinctly addressable areas, one for each bus, then

address decoding logic can be used to generate the bus request

signals. Figure 9 shows a generalized shared-bus

organization.
Internal Architecture

The internal architecture of a processing element can be

divided inco several seccioiis, as sriowii iii cigure 10. Among

these are the CPU, local memory, local I/O, and a

communication structure. If the communication structure is

memory mapped, then it may be viewed as a secondary or

tertiary memory level. Therefore, the local memory could be

separated into a cache and a working space. This would permit

virtual memory techniques to be used, in conjunction with the

multi-tasking principles previously described.

However, many different architectures could be

implemented, depending on the nature of the problems a

www.manaraa.com

35

particular structure is designed to solve. An internal

arrangement optimized for image processing would probably not

be suitable for digital filters, and vice versa. The

applications, and hence the internal architectures are not of

primary interest in this paper. But, we can assume that any

architecture will involve, at a minimum, a processing section

and a communication section. The logical operation of the

latter is of primary importance here.

CPU CPU CPU

MEMORY MEMORY MEMORY

LOGTC LOGTC LOGIC

ARBITER

Figure 9. Generalized Shared-bus Structure

www.manaraa.com

37

Deadlock

Aside from the problems of arbitration and connectivity,

memory-oriented multi-microcomputers suffer a potential for

deadlock. This is demonstrated in Figure 11, where a cycle of

three processors is depicted. If each processor

simultaneously requests an access to an adjoining memory, as

shown by orientation of the arrows, and then waits for its

request to be granted, the system will be deadlocked.

LOCAL

LOCAL BUS

COMMUNICATION
STRUCTURE

LOCAL
MEMORY

>

Figure 10. Internal Structure of a Processor

www.manaraa.com

38

In issuing a memory request, a processor must activate

its address, data and control lines. These lines are tied to

the shared memory, which is "locked-up" while the signals are

active. A processor must be disconnected from its shared

memory for an adjoining processor to gain access; yet, a

processor cannot yield the memory while it is "trapped" in a

wait state. This paradox results in a potential for deadlock

when conventional microprocessors are used as processing

elements.

The problem can be solved by the addition of a partition

between each processor and its shared memory areas. Such

partitions are implemented like memory-bus interfaces -- using

open collector or three-state devices. This allows a

processor to be disconnected from its shared memory until its

own external requests are granted. Thus, processors with high

priorities can access the shared memories of their lower

priority neighbors, if an arbiter is used to prevent ongoing

cycles from being disrupted.

Conventional microprocessors would be suitable candidates

for multi-microcomputer applications, if the addition of extra

circuitry is acceptable. A better approach would involve new

VLSI designs which have the desired characteristics

incorporated into a single package.

Two such designs are diagrammed in Figures 12 and 13.

Both have partitions between the processor sections and the

shared memory sections. The main difference between them is

www.manaraa.com

39

that the design in Figure 12 has two unidirectional bus-access

ports, while the other has two bidirectional ports.

MEM CPU

CPU MEM

MEM CPU

The processors can access the shared memories in both

cases, and external processors also have access. Therefore, a

capability for communication exists in both configurations.

The tradeoff is primarily one of complexity vs. flexibility.

The design shown in Figure 12 would be less complex and

costly, because unidirectional address buffers are simpler

than bidirectional transceivers, and because less arbitration

logic would be required. However, a bidirectional design

would allow more flexibility in accessing shared data. This

www.manaraa.com

40

feature might be of value in certain applications, especially

if messages were routed through the shared memory without

involving the local processor. The communication load of

intermediate processors could then be reduced, for traversais

of two or more hops.

Z80 Microprocessor Implementation

The schematics shown in Figures 14 through 16 represent a

very simple implementaion of the circuitry for an MP.

Ideally, a more advanced processor/interface would be used,

but this arrangement allowed most of the multi-microcomputer

principles described above to be tested. The circuits

depicted here use a Z80 microprocessor as a processing

element. The Z80 and its memory and I/O resources are not

shown, but the essential control lines are included in the

diagrams. This implementation is similar to the

unidirectional Mr shown in Figure 12, except that the

processor partition is omitted.

As mentioned earlier, the function of the processor

partition is the prevention of deadlock -- a condition which

can also be avoided by eliminating cycles from the MP

interconnection structures. In a general sense, the extra

partition is required, but not for the simple configuration

used in the software experiments to be described in the next

major section.

www.manaraa.com

41

MEMORY PORT

PARTITION

PROCESSOR PORT

ARBITRATION
& INTERRUPTS

MICROPROCESSOR
& CACHE LOCAL RESOURCES

SHARED
MEMORY

Figure 12. MP with Unidirectional Ports

www.manaraa.com

42

BIDIRECTIONAL PORT BIDIRECTIONAL PORT

PARTITION

MICROPROCESSOR
& CACHE

ARBITRATION
& INTERRUPTS

SHARED

LOCAL RESOURCES

i'igure 13. MP with Bidirectional Ports

I
i

www.manaraa.com

43

Figure 14 shows the processor port of Figure 12 in

greater detail. The two 74LS244 octal buffers are used to

enable the local Z80 address lines onto an external bus. The

74LS245 octal transceiver allows data to pass between the Z80

and the bus, in either direction. The 74LS125 switches the

four ZBO memory and I/O control lines onto the bus. These ICs

are TTL three-state devices, and all are enabled by the bus

grant signal from an external arbiter. Additionally, the

74LS245 requires the local read signal, to control the

direction of the data transfers.

Figure 15 shows essentially the same functions, but for

the memory port of Figure 12. The circuits differ in that the

memory port includes some additional address mapping logic to

transform the external address to an internal address, in the

range of the local memory and I/O decoding circuitry. The

three-state ICs in the memory port are enabled by the DMA,

(direct memory access) signal of the local processor. A

separate arbiter and a ZBO bus partition could be used to

divide the Z80 address space into local and shared areas, but

this was deemed unnecessary for experimental purposes.

Additionally, the external write signal is used with the

memory port 74LS245, to control the direction of the data

transfers.

Figure 15 shows the remainder of the circuitry required

for a simple MP interface. This consists of a section for

decoding an address in the range of the external bus, a

www.manaraa.com

44

generator for the bus request and Z80 wait signals, and a

semaphore circuit. The address decoder uses the upper address

lines of the Z80 to determine when the address is within the

bus segment. The decoder drives the bus request and Z80 wait

lines low. When the bus grant line from the external arbiter

drops low, the Z80 wait line goes high. This terminates the

280 wait state, and allows it to proceed with its external bus

cycle.

The semaphore logic was included to allow external

processors to synchronize their queuing operations with those

of the local processor. If one processor attempts a queuing

operation while another processor has one in progress, then

the queue structure may be disrupted. Thus, a doctrine of

mutual exclusion is followed, so that only one processor is

allowed to perform communication queuing at a time.

A semaphore is the name for a circuit or operation which

permits mutual exclusion. A 280 semaphore must be implemented

with additional logic as shown here, because the 280, like

most microprocessors, is incapable of performing semaphore

operations on memory locations. Larger computers use special

test-and-set instructions to implement memory semaphores.

The semaphore circuit used here is set by a write

operation at its I/O port address. It is reset by a read

operation at that address. However, the value of the

semaphore can be determined by a read operation, through data

line #7, before the reset signal is generated.

www.manaraa.com

45

ADDRESS

244

CONTROL
244 DATA

125 '245

Z80

BUS GRANT

Figure 14. Z80 Processor Port

DATA CONTROL

244

ADDRESS

DECODII
LOGIC

125 245

Z80

Figure 15. Z80 Memory Port

www.manaraa.com

46

WRITE

SEMAPHORE
LOGIC READ

RESET

CHTF
SELECT ADDRESS

DECODER

07

I/O

MEMORY
> . DUi

REQUEST

BUS
GRANT

> WAIT

Figure 16. Remainder of MP Circuitry

www.manaraa.com

47

So, if the semaphore is set, this indicates to the

processor which reads it that the communication queuing

structure is available for manipulation. If the semaphore is

found to be reset at the time of a read, then the

communication structure is temporarily in use, and the

processor must wait. Since the semaphore is always reset at

the termination of a read cycle, a second read operation,

without an intervening write, will find the queuing structure

unavailable. When a processor completes its queuing

operation, it sets the semaphore by writing to it, allowing a

single blocked processor to proceed.

The purpose of the MP interface described above was to

allow the interconnection of two or three small 280

microcomputers, so that a multi-tasking software package could

be tested. As it turned out, the operation of the MP and the

software was verified with a dual-processor configuration, as

described in the following section.

www.manaraa.com

48

MULTI-TASKING SOFTWARE

The programs described in the following pages were used

to explore several questions about the effectiveness of the

techniques presented in preceding sections. First, can a

program written and optimized for a uniprocessor be

effectively rewritten for a multi-microcomputer system?

Secondly, to what extent does the communication implicit in a

multi-microcomputer implementation influence computational

efficiency? Is memory contention a significant factor? Does

a mutually exclusive queuing system provide a workable and

reliable communication channel? And finally, can a near-

linear speedup be achieved as more processors are added? The

experiments presented here do not address these questions

rigorously; however, the results seem to speak positively for

multi-microcomputer implementations, at least for certain

types of problems.

The programs presented in Appendix B were written in a

high-level language developed at Iowa State University, called

Portal (6). Several small programs were written in Z80

assembly language, for utility purposes, and are contained in

Appendix C. The software was compiled or assembled, linked

and downloaded, using a PDP-11/34 system under Unix. The 280

microcomputers used firmware monitors, to allow program

downloading and debugging. The Portal programs were all

developed and checked on the host system, before being

recompiled for the ZBOs.

www.manaraa.com

49

The first program, called "unipro," was written for a

uniprocessor, to calculate the average path length through

Geode structures. It uses the same algorithm as the PL/I

program TRAVEL, presented earlier. The main difference is

that many traversais are performed by unipro. The traversais

are produced by the function "produce," and are accomplished

by "consume."

Three other functions are invoked in the main routine of

unipro. The function "initialize" first sets the initial

value of the program variables. Then, "sclk" starts the real­

time clock interfaced to the Z80 microcomputer. When the main

loop finishes, "rclk" stops and reads the clock. The two

clock functions were written in Z80 assembly language, and

were linked with the main module.

These programs use two parameters, and produce two

results.- Respectively, the parameters P and R are the number

of ports and the level of recursion of a given Geode. These

constants determine the complexity of the resulting series of

traversais. This, in turn, determines the run-time of the

main loop -- an interval measured by the clock routines. The

other result is a record of the total number of hops performed

in the main loop, which is stored in the 16-bit words ul5 and

115. This quantity, when divided by the number of traversais,

gives the average path length through the selected Geode.

The second program "produce" is a version of unipro,

modified for multi-tasking with more than one Z80 processor.

www.manaraa.com

50

It is more complex than unipro, reflecting the inclusion of a

queuing system for communications. This required two

additional assembly language programs, "p_prd" and "v_prd,"

which perform the semaphore operations described previously.

Four additional Portal functions were required as well, to

perform the queuing operations.

The program starts in the same way as unipro, by invoking

the initialization and clock start-up routines. However, the

semaphore is set before entering the main loop, by invoking

v_prd, to indicate to other processors that the queuing system

is available.

The structure of a queue element is declared in the first

part of the variables section. The queue elements contain

fields for source and destination addresses, and for the

traversal length. They are chained together, through their

link fields, into two separate queues. The two queues consist

of elements containing tasks, with "thead" and "ttail" as

pointers, and of elements containing replies, using "rhead"

and "rtail." A task consists of a source and destination

address pair, while a reply gives the distance between the two

nodes, using the "length" field.

The function "get-reply" removes an element from the

reply queue, and adds the length to 116 and ul5. Then,

produce rewrites the queue element with a new source and

destination address pair. Next, "rel_task" releases the

element onto the task queue, where it may be picked-up and

www.manaraa.com

51

executed by any free processor. The processor executing

produce will become free when it empties the reply queue -- a

condition detected by get_reply, and indicated when the

Boolean variable "flag2" is set.

This condition causes produce to perform one of the

traversais it has previously generated, by invoking get_task,

consume and rel_reply. These routines remove a task from the

task queue, execute it, and return the reply to the reply

queue.

This results in a producer/consumer relationship between

the two sections. The output queue of the producer is the

input queue of the consumer. The opposite is true in the case

of the reply queue. This relationship is demonstrated by the

third program, "consume," which is essentially identical to

the consumer section of produce.

The consumer is far more computationally complex than the

producer. Therefore, one producer can serve many consumers.

Since a global queuing structure is used, with semaphore

synchronization, any processor with access to the memory

containing the queue structure can function independently as a

producer or consumer. Such an arrangement permits expansion

of the system to any size, by simply adding processors loaded

with the appropriate producer or consumer software.

However, additional care is required to achieve a proper

balance. Since one producer can serve many consumers, it only

makes sense to add extra consumers at first. Once the limit

www.manaraa.com

52

of a single producer is reached, it will tend to become a

system bottleneck. This calls for the addition of another

producer and a group of consumers, if increased performance is

required.

At least three main factors tend to reduce the efficiency

of such multi-tasking systems. First, communication implies

that queuing routines must be invoked, requiring some of the

available processor cycles. Secondly, a processor may spend

some time waiting at a semaphore, while another processor

performs queuing operations. Finally, memory contention can

cause a processor to wait on a cycle-by-cycle basis, while

another processor completes a memory access. The experiments

described in the following paragraphs provide some insight

into the significance of these factors to the operation of

multi-microcomputer systems.

Experiments

The five simple experiments described in the next few

paragraphs were performed with a dual Z80 configuration. One

processor was connected to the Unix system and a CRT terminal,

while the other communicated only through the memory of the

first. This secondary processor was attached to the main unit

through the memory port diagrammed in Figure 15.

Programs for the secondary processor were first

downloaded into the memory of its host. The semaphore circuit

was set twice in succession -- once to tell the secondary

processor to load the program into its own local memory, and

www.manaraa.com

53

again to tell it to begin execution. The programs for the

primary Z80 were then loaded and executed.

The secondary processor had access to the memory and I/O

space of the primary, through its memory port. Since it used

the queue structure for communication, its first action was to

read the semaphore. The semaphore was initially reset,

causing the secondary to wait for the primary to load, start

and initialize its program, and then to set the semaphore.

After this point, both processors were in full operation,

communicating through the semaphore-protected queuing

structure.

The first experimental step was to compare the

performance of a single processor executing the first working

version of unipro, with a dual-processor running the earliest

versions of the programs produce and consume. Since none of

the programs had been optimized, the results are of limited

value, but the observed speedup was 1.22, for a (3,4) Geode.

At this point, the main goal had been to get the system

working, so the software had not been fully developed. The

produce program had no consumer section. Its only function

was to produce tasks and sum the replies. The consume program

accessed the task element as contained in the memory of the

producer, instead of obtaining a local copy. This caused some

memory contention, since the task element was accessed

frequently by the consumer.

So, the second experimental step was to modify the

www.manaraa.com

54

consumer into its present form, to test the effect on the

computation rate. The function get_task now copies task

elements into variables in the local memory of the consumer,

before they are used in traversais. This reduces the number

of accesses to the producer's memory, and so improves

performance -- as long as the copy operation requires less

time than would be involved in contention. The speedup ratio

increased to 1.47 as a result of this modification.

Later analysis determined that this was not a simple case

of memory contention. Contention, by definition, is a factor;

however, it may not have been a very important one in this

case. The performance improvement can be accounted for by the

improved code generated by the compiler when data accesses use

ordinary variables in local memory, instead of pointer-type

variables. Before the modifications to the consumer, pointers

were used to give indirect access to variables outside the

local data segment -- the queue elements in the producer's

memory area. Elimination of this level of indirection was

probably more responsible for the resulting speedup than was

the virtual elimination of contention.

The results of this analysis led to an examination of the

techniques used in developing the software, as the third

experimental step. All programs were modified, like the

consumer, to take advantage of the characteristics of the

compiler and the Z8Û processor. One major change was the use

of bytes as variables, instead of 15-bit words, whenever

1
I
I

www.manaraa.com

55

possible, allowing more efficient code generation for the

8-bit Z80. These changes were more effective for unipro than

for the dual-processor arrangement, because the speedup factor

dropped to 1.07, with a (3,4) Geode.

Obviously, the dual-processor arrangement was seriously

out of balance. The consumer program proved to be much slower

than the producer, causing a bottleneck. This was

demonstrated by a fourth series of experiments, which also

resulted in the observation of an interesting paradox.

The approach involved the addition of successively

greater amounts of delay to the producer, to see how much

effect this had on the execution speed of the dual-processor

system. Each time the producer, (operating without a consumer

section) produced a task, a delay function was invoked. Since

a queuing system was used, this had no effect on the execution

speed, as long as the producer ran fast enough to keep the

task queue completely full. Since the producer processor was

not allowed to consume tasks, it idled most of the time,

accounting for the low 1.07 speedup ratio.

Adding delay to the producer did not delay the consumer,

as long as the task queue remained full, and the reply queue

empty. The delay paradox was observed when the performance of

the system suddenly increased after an increase in the delay.

At this point, the producer and consumer became balanced, in

terms of their relative execution speeds. This improved

performance because the queuing programs ran faster when their

www.manaraa.com

56

respective queues were neither full nor empty, but somewhere

in between. This is the case with a balanced system, with the

queue length varying over a range. Thus, queue size is a

factor in queuing efficiency, even with a well-balanced

system.

The results of this fourth series of tests led to the

inclusion of a consumer section in the main loop of the

producer, to bring the producer to its present form. Since

delays, up to a certain point, had no detrimental effects, the

extra computations could only help improve efficiency. The

addition of the consumer section, yielding one producer and

two consumers, caused a dramatic jump in the speedup ratio

from 1.07 to 1.67 for a (3,4) Geode.

The fifth series of experiments involved testing the

final configuration with Geodes of several types, as shown in

Table 2. Three comparisons were made. First, unipro was

compared to the producer program, in its present form, (with a

consumer section) to determine effect the additional

communication programs had on performance.

These ratios are shown in column CI of the table. As the

average distance through the Geode increased, CI increased,

indicating a lesser effect of communication. A greater

average distance means that more hops are performed in a

typical traversal. In turn, this causes the consumer to

become more compute bound, lessening the communication load.

www.manaraa.com

57

Table 2. Experimental Results

GEODE AVEl CI C2 C3

(2,7) 42.66 0.91 1.82 2.00
(3,5) 11.15 0.85 1.71 2.00
(4,4) 9.78 0.81 1.62 1.99
(5,3) 5.09 0.71 1.50 2.10
(8,3) 5.78 0.75 1.47 1.96

The C2 column shows a comparison between unipro and the

full dual-processor configuration. Because a semaphore-

protected queuing system was used, no changes were required in

the producer -- it was only necessary to plug in the

additional processor and start its consumer software. More

consumers could have been added, if the required hardware had

been implemented.

The results follow those shown in column CI. The

consumer becomes more compute bound as the average path length

increases, reducing the need for communication, which results

in greater speedup. This illustrates that the performance of

a multi-microcomputer system can be estimated from

observations of a uniprocessor.

If the use of communication functions slows the augmented

uniprocessor algorithm considerably, then less speedup will be

attained by adding extra processors. However, if tests with

the augmented uniprocessor are encouraging, then a basis

exists for proceeding with the multi-microcomputer

implementation.

www.manaraa.com

58

Column C3 shows a comparison of the producer, running

with a consumer section on a uniprocessor, with the dual-

processor configuration. In most cases, the execution speed

is essentially doubled with the dual processor. Again, this

illustrates that the inefficiencies in multi-tasking systems

are mainly associated with the process of communication.

Except for communication overhead, a linear speedup could be

realized as extra consumers are added, until the producer

becomes overloaded.

www.manaraa.com

59

CONCLUSIONS

The work described in this document demonstrates that a

recursive interconnection structure can be used to construct

large multi-microcomputer systems. Such systems are very

promising for future implementation with VLSI technology.

This paper describes how a Geode system can be constructed,

using a processor element called an MP. The design

alternatives were considered, and two MP prototypes were built

and tested. The two prototypes were used to develop a multi­

tasking algorithm based on producers and consumers. A

semaphore was implemented in hardware, to allow

synchronization of the multi-tasking software. The results of

a series of experiments indicate that multi-microcomputers can

be cost-effective, as long as the appropriate design

techniques are utilized, as described below.

Advanced VLSI microcomputers are needed, with features

equivalent to most mainframe computers incorporated into a

single package. Some of these features are 32- and 54-bit

word lengths, hierarchical memories with mapping hardware, and

a full set of arithmetical and logical instructions. Advanced

uniprocessor techniques such as pipelining would be useful if

they could be fitted into the package. The microprocessors

developed in the last decade, including the latest 16-bit

versions, are generally too primitive for most computationally

intensive applications.

www.manaraa.com

60

The applications can be compute bound, or in some cases,

I/O bound. Compute bound algorithms spend little of their

time communicating, so computations proceed with maximum

rapidity. Algorithms which are not compute bound can be

efficiently implemented if they naturally involve buffer-

oriented data manipulations which fit into a queue structure.

In this case, a uniprocessor would also be limited by the

queuing operations, so parallel execution of tasks would

introduce no additional overhead.

The memory system should be partitioned into local and

global hierarchies to minimize the effects of memory

contention. If processors access their data segments

frequently, then the data should be moved into the local area.

For this reason, code should not be shared directly, but a

common copy could be maintained in the shared memory.

Partitioning also fits well with virtual-memory and cache-

oriented designs.

A producer/consumer multi-tasking algorithm works well,

and can be expanded to any size. The division, in terms of

execution time, need not be equal, as long as the bottleneck

process can be replicated to achieve a proper balance. One

producer could serve many identical consumers, or one consumer

could process the output of several producers, depending on

their relative speeds. The queuing system tends to mask any

temporary variations in speed, as long as the queues are long

enough.

www.manaraa.com

61

The MP approach can be used to implement many different

structures, with the shared busses representing nodes, and the

attached MPs providing links. Irregular structures can also

be implemented, using routing tables instead of fixed routing

algorithms. In this way, structures can be created to handle

specialized problems.

Memory-bus oriented designs are not inherently better

than broadcast channels and serial or parallel communication

links, but they are simple to implement, and work well for

short data transfers. Since low communication loads are

necessary for good computational efficiency, slower and

cheaper communication methods can he used as long as they

provide sufficient bandwidth to allow a queuing system to

maintain a relatively constant throughput. Serial

communication seems advantageous from the standpoints of

complexity and connectivity, especially if communication

bandwidth is low and messages are long.

The Geode interconnection structure could be useful in

orthogonal types of problems. Applications like spatial

correlation and artificial vision seem to fit particularly

well. The four-port structure of Figure 8, with the recursive

central supernode, could be especially effective in the

latter, while eight-port Geodes might be preferable for three

dimensional spatial problems.

Cost-effectiveness is the central idea behind multi-

microcomputer proposals. Large mainframe computers can

www.manaraa.com

62

provide the same power, but VLSI processors can be mass-

produced very inexpensively -- at least, this will soon be the

case. Structures like Geode, which allow easy interconnection

of processors like MP, promise to make large-scale computing

relatively cheap during the next decade. Some areas, such as

multi-tasking operating systems, and concurrent high-level

languages need more development, but the necessary principles

are well-established.

www.manaraa.com

53

BIBLIOGRAPHY

1. Adams, G. and Rolander, T. "Design Motivations for
Multiple Processor Microcomputer Systems." Computer
Design 15 (July 19, 1978): 81-89.

2. Anderson, G. and Jensen, E. "Computer Interconnection
Structures: Taxonomy, Characteristics, and Examples."
ACM Computing Surveys 7 (December 1975): 197-213.

3. Barnes, G.; Brown, R.; Kato, M.; Kuck, D.; Slotnik, D.
and Stokes, R. "The ILLIAC IV Computer." IEEE Trans­
actions on Computers C17 (August 1968): 746-757.

4. Brinch Hansen, P. "Structured Multiprogramming."
Communications of the ACM 15 (August 1972): 574-578.

5. Davies, D.; Barber, D.; Price, W. and Solomonides, C.
Computer Networks and Their Protocols. New York:
Wiley, 1979.

6. Davis, J. "A High-level Programming Language for Micro­
computers." Master's thesis, Iowa State University, 1981.

7. Dennis, J. "Data Flow Supercomputers." Computer 13
(November 1980): 48-56.

8. Despain, A. and Patterson, D. "X-Tree: A Tree Structured
Multi-Processor Computer Architecture." Symposium
on Computer Architecture, Conference Proceedings 5
(April- 1978): 144-151.

9. Enslow, P. "Multiprocessor Organization- a Survey."
ACM Computing Surveys 9 (March 1977): 103-129.

10. Finkel, R. and Solomon, M. "Processor Interconnection
Strategies." IEEE Transactions on Computers C29
(May 1980): 360-371.

11. Friedman, A. and Simoncini, L. "The Effect of LSI Tech­
nology on the Theory of Modular Computer Design."
Computer 11 (July 1978): 60-67.

12. Fuller, S.; Ousterhout, J.; Raskin, L.; Rubinfeld, P.;
Sindhu, P. and Swan, R. "Multi-microprocessors: an
Overview and Working Example." Proceedings of the
IEEE 11 (February 1978): 216-228.

13. Jansen, P. and Kessels, J. "The DIMOND: A Component for
the Modular Construction of Switching Networks." IEEE
Transactions on Computers C29 (October 1980): 884-889.

www.manaraa.com

64

14. Kimbleton, S. and Schneider, G. "Computer Communications
Networks: Approaches, Objectives, and Performance
Considerations." ACM Computing Surveys 7
(September 1975): 129-173.

15. Lipovski, G. "On a Varistructured Array of Microprocessors."
IEEE Transactions on Computers C26 (February 1977): 125-138.

16. Reeves, A. "A Systematically Designed Binary Array
Processor." IEEE Transactions on Computers C29
(April 1980): 278-287.

17. Rodrigue, G.; Giroux, E. and Pratt, M. "Perspectives
on Large-scale Scientific Computation." Computer 13
(October 1980): 65-80.

18. Schwartz, M. Computer Communication Network Design and
Analysis. New York: Prentice-Hall, 1977.

19. Sugarman, R. "'Superpower' Computers." Spectrum 17
(April 1980): 28-34.

20. Wittie, L. "Communication Structures for Large Networks
of Microcomputers." IEEE Transactions on Computers C30
(April 1980): 264-273.

www.manaraa.com

65

ACKNOWLEDGEMENTS

I would like to thank Professor A.V. Pohm of the

Electrical Engineering Department at Iowa State University,

for giving me the opportunity to work freely in my area of

interest, for providing valuable theoretical insights relating

to processor/memory configurations and communications, and for

arranging to obtain equipment, parts and computer time.

I would also like to thank Professor R.J. Zingg for

giving his attention to some of the questions raised by the

Geode structure, and for the hours spent in discussing the

implications of Geode, X-tree and other structures.

Davis provided assistance with the Unix operating system, the

ISU local data network, and the Portal programming language.

This work was supported by the Engineering Research

Institute and the Department of Electrical Engineering at Iowa

State University.

www.manaraa.com

65

APPENDIX A: TRAVEL PROGRAM

TRAVEL: PROC OPTIONS(MAIN);

DCL SRC CHAR(8) VAR; /* SOURCE ADDRESS */
DCL DST CHAR(8) VAR; /* DESTINATION ADDRESS */
DCL R FIXED BIN(15); /* LEVEL OF RECURSION */
DCL CTR FIXED BIN(15); /* COUNTER VARIABLE */
DCL PTR FIXED BIN(15); /* STRING POINTER */
DCL TCHAR CHAR(l); /* CHARACTER VARIABLE */

SRC = 'AB'; DST = 'DC'; R = LENGTH(SRC);

PUT EDIT(SRC,DST,R) (A(R),X(2),A(R),X(2),F(1));

DO WHILE(NEW); /* HOP FROM NODE TO NODE */
PUT SKIP EDIT(SRC,TCHAR) (A(R),X(2),A(1));

END;
STOP;

NEW: PROC RETURNS(BIT(1));

TCHAR = PORT; /* GET THE PORT ID */
IF TCHAR = '!' THEN RETURN('0'B);
DO PTR = R TO 1 BY -1 WHILE(SUSTR(SRC,PTR,1)=TCHAR); END;
SUBSTR(SRC,PTR,R-PTR+1) =

rnz-iTUTvr) t I T« r OTTO T>rnr* n \ "d "omT-) i \ .
J. I I \ \ f J. f ^ f f j.\, ^ u. / /

RETURN('I'B); /* NOT YET FINISHED */

END NEW;

PORT: PROC RETURNS(CHAR);

DO CTR = i TO R;
TCHAR = SUBSTR(DST,CTR,1);
IF TCHAR -= SUBSTR(SRC,CTR,1) THEN RETURN(TCHAR);

END;

RETURN('!'); /* SRC=DST */

END PORT;
END TRAVEL;

www.manaraa.com

67

APPENDIX B: PORTAL PROGRAMS

Unipro: Uniprocessor Version

procedure sclk
procedure rclk

const
P
R

vsr
src[0:R-l]:
dst[o:R-i]:
sstrCOiR-l]:
dstrCOIR-1]:
first[0:R-l]
(* base P di
portsCO;?];
ul6;
116:
step:
last:

external,
externali

= 3?
= A f

byte J
byte*
byteî
byte?
byte»

aits—
byte
word
word
word»
word»

(*
(*

(*
(*
(*
(*
(*

used
•C'A' »
publi
publi

(*
(*

(* start real-1il*e clock
(* read real-time clock *)

number of ports per node *)
level of recursion *)

address of
address of
producer's
producer's
producer's

in addresses

source node *)
destination node
copy of src *)
copy of dst *)
starting point *)
*)

*)

'B' » 'C » 'D' » 'E' » '
c •€0>» (* hop
c -CO» (* hop
production step
production step

F'»'G'»'H'}»
counter— hiëh *)
counter— low *)
counter *)
limit *)

procedure main public?
begin

initialize» (* initialize variables *)
sclk» (* start real-time clock *)
while step < last do begin

produce»

end»
rclk »

end»
(* read real-time clock *)

(* compare two strings *)
procedure cmpstr(ptrl»ptr2»cnt): byte»
psrm

ptri: Gbyte»
ptr2: @byte»
cnt: byte;

begin
while cnt > 0 do begin

if eptrl++ <> eptr2++ then return false
else cnt—»

end»
return true»

end»
(*

www.manaraa.com

68

*)
procedure initialise* (* initialize variables *)
var x,y; byte?
beëin
step î= o;
last î= 1;
for X := 1 to R-1 do last i = last*?»
for y i= 0 to R-1 do beëin

sstrCy] := 'Pi'r
dstrCy] t= 'A'f
firstCy] ;= 'A'î

end;
end;

procedure riext(sptr)» (* increment addresses— base p *)
parm sptrl Pbyteî
var

ctrrindxl byte?
alpha* byte*
switch: byte?

beain
indx î= R-i;
switch î= true*

while switch do beëin
alpha î= sptrCindxDr
ctr î = o ;
while alpha <> portsCctr] and ctr < P do ctr++;
if ctr = P-1 then alpha i= 'A'
else alpha }= portsCctr+lD;
sptrCindx] î= alpha*
if alpha <> 'A' or indx = 0 then switch î= false
else indx—?

end;
end;

procedure produce?
var XÎ byte*
begin

for X î= 0 to R-1 do beâin (* copy •<!src»dst> *)
srcCxD î= sstrCxU;
dstCx] ?= dstrCx]:

end ;
next(«dstrCOJ)» (* increment destination address *)

if cmpstr(«dstrCO]*,firstCO]*R) then begin
next(•sstrCOU); (* increment source address *)
step-f+;

end*
end*
(*

www.manaraa.com

69

*)
procedure consume. (* hop from node to node *)

vsr
ctrrtmpî
enabled,switch :
scharfdcharÎ

byteî
byte;
byte;

beain
enabled î= true;

while enabled do beain
if cmpstr<•srcCOD» 4dstCODfR) then enabled t= false
else beain

switch î= true;
ctr î= o ;

while switch and (ctr < R) do begin
schar î= srcCctrD;
dchar î= dstCctr],
if schar <> dchar then switch î= false
else ctr++;

end;

tmp î= R-i;

(* hop within same cluster *)
if dchar <> srcCtmpD then srcCtmp] î= dchar

else begin (* hop outside local cluster *)
switch î= true;

while switch do beain
if dchar <> srcCtmp] then switch î= false
else tmp—;

end ;

schar î= srcCtmpj;
srcCtmp] î= dchar;

while tmp < R-i do begin
tmp-f+;
srcCtmp] î= schar;

end;
end;

if not ++116 then ul6++; (* count hops *)
end;

end;

www.manaraa.com

70

Produce: Multi-tasking Producer
procedure p_prd external?
procedure v_prd external,
procedure scik external»
procedure rclk external?

(* P semaphore operation t)
(* V semaphore operation *)

start real-time clock
(* read real-time clock *>

const
P = 3;
R = 4;
offset = $4000?

(* ports per node *)
(* level of recursion *)
(* address offset

var
(* Queue structure *)
struct a -C

link: (*
length! byte? (*
srcCOIR-l]; byte? (*
dstCOIR-l]: byte? (*

link to next element *)
length of a traversal *)
address of source node *)
address of destination node *)

(* Queue allocation and pointers *)
taskCO:?]: 0 public? (* Queue allocation *)
theadJ PQ public? (* head of task Queue *)
ttaili @Q public? (* tail of task Queue %)
rheadî @Q public? (* head of reply Queue *)
rtailÎ @ G public? (* tail o r reply Queue *)
temp; @ a public? (* temporary pointer *)
pptr Î PQ public? (* producer pointer *)
cptr Î @Q public? (* consumer pointer

(* address strings *)
^ ̂ ^ r • oH "1 • + o •- / ̂ e

dstrCO:R-lD: byte? (*
firstCO:R-lD: byte? (*
srceCOZR-1]; byte? (*
dest[0:R-l]: byte? (*

. r*. <r » I fTp o rk ' c

consumer's
producer's
producer's
producer's

cmi iT^r^o X)
copy of destination *)
starting address *)
copy of source *)
copy of destination *)

(* base P
portsC0î7I

digits—
Î byte

used in
•C'A' »

addresses *)
'B' ,'C, 'El', 'E' f'F','G','H'}?

(* variables* flags and counters *)
flag: byte <true> ? temporary flag *)
fiagz; byte •Cfaise>y temporary fiss »)
distance: byte -C0>? (* length of traversal *)
step: word -C0>? (* source counter #)
last: word <1}? (* source limit *)
pstep: word -C8>? (* production counter #)
cstep: word fO}? (* completion counter *)
116: word public <0>? (* hop counter— low *)
ui6: word public •{0>? (* hop countei— high *)

www.manaraa.com

71

*)

procedure main public?

initialize,
sclkf
v_prdf
while cstep <
sSet-reply;
if flag and

produce;
rel_taskf

end;

(* set UP Queue structure *)
(* start real-time clock *>
(* set semaphore— start synchronization *)
pstep do begin (* consume all produced *)
(* try for a Queue element *)

step < last then begin (* produce *)
(* generate -Csrc,dst> *)
(* put -Csrcjdst> on task Queue *)

(*
($

<*

if flag2 then begin <*
get-task? (* consume
if flag then begin

fl3g2 î= falser
consumei
rel_replyÎ

end,
end;

end;
rclkr (* finished-

end ;
(* compare two strings *)
procedure cmpstr(ptrlfptr2pcnt)
parm

ptri; Gbyte;
ptr2î Gbyte;
cnt; byte;

task
*)

Queue is full *)

consume only one task *)
hop from node to node
put answer on reply Queue *)

read real-time clock *)

byte:

begin
while cnt > 0 do begin

if @Ptrl++ <> @ptr2fi then return false
else cnt—;

end ;
return true?

end ;
procedure count; (* count hops *)
var xyyl byte;

begin
y 1= pptr,length;
for X i = 1 to y do begin

if not ++116 then ul6++;
end;
cstePTTr

end;

www.manaraa.com

72

*)
procedure âet_replyî (* try for a oueue element *)
beëin

p-prd? (f- P ssssphors operation *)
if rhesd <> nil then beëin (* check head of reply oueue *)

if rtail = rhesd then begin <* last element *)
rtail i = nil;
fl332 î= true; (* enable consumption *)

end;
pptr î= rhead - offset;
rhesd î= pptr,link;
flag i = true;

end
else flag î= false;
v_prd;
if flag then count; <* count the hops *)

end;
procedure get-task; (* try for a Queue element *)
var KÎ byte;
begin

p_prd;
if thead <> nil then begin

if ttsil = thead then ttsil := nil;
cptr î= thead - offset;
thead i= cptr.link;
flag î= true;
for X := 0 to R-1 do begin (* copy •CsrcTdst> *)

sstrCx] ;= cptr.srcCx];
dstrCxD ;= cptr.dstCx];

end;
distance := O;

else flag î= false;
v_prd;

end ;

procedure rei_reply; put answer on reply aueue *)
begin

p_prd;
cptr.link nil;
if rtail <> nil then begin

temp := rtail - offset;
temp,link î= cptr + offset;

end;
rtsil î= cptr + offset;
if rhead = nil then rhead î= rtail;
CPtr,length î = distance;
v_prd;

end;
(*

www.manaraa.com

73

*)
procedure rel_t3Skî (* put •Csrc*dst> on task oueue *)
besin

p_prdî
pptr.link J= nil;
if ttail <> nil then beëin

temp := ttail - offset*
temp,link î= pptr + offset)

end;
ttail î= pptr + offset;
if thead = nil then thead î= ttail;
v_prdî

end;

procedure next(sptr); (* increment address string *)
partn sptrî Bbyte;

var
ctrrindxl byte*
alpha: byte;
switch; byte»

begin
indx ;= R-i;
switch ;= true;

while switch do begin
alpha ;= sptrCindx];
ctr }= o ;

while al^ha <> PortsCctr] sr.d ctr < P dc ctrff:

if ctr = P-1 then alpha := 'A'
else alpha î= PortsCctr+13;

sptrCindx] i= alpha;

if alpha <> 'A' or indx = 0 then switch î= false
else indx—;

end;
end;

www.manaraa.com

74

procedure initialize? (* set-up Queue structure *)
vsr Xfsl bate?

begin
for X 1= 1 to R-1 do last î= last*P»
for X î= 0 to R-1 do begin

srceCx] t= 'A'*
destCx] î= 'A'f
firstCx] t= 'A';

end;

for a ;= 0 to 6 do begin
t3sk[a],link î= «taskCa+l] + offset?
taskCa],length := 0?

end?

t3sk[7]«link 5= nil?
taskC?],length î = 0?
rhead %= «taskCOD + offset?
rtail t= «taskC73 + offset?
thead î= nil?
ttail î= nil?

end?

procedure produce? (* generate {srcfdst} *)
var x: bate?

begin
for X î= 0 to R-1 do begin (* copa current •Csrc»dst> *)

pptr.srcCx] }= srceCxD?
pptr.dstCxj i = destLxj?

end?

pptr,length î= 0?
next(•destCOj)? (* increment destination *)

if cBiPstr < »destC03 7 « f irstCOD ?R) then begin
nexi(«sr-eeCOj > ? incrément source *)
step++?

end?
pstep++?

end?
(*

www.manaraa.com

75

*)
procedure consume» <* shortest psth through Geode *)
vsr

ctrrtmp; byte)
enabledJ switchÎ bytef
scharpdchar: byteî

begin
enabled î= true*

while enabled do begin (* loop til strings are eaual
if cispstr (« sstrCOD » •dstrCOJ > R) then enabled î= false
else begin

switch {= true?
ctr %= 0Î

find first location where sstr <> dstr *)
while switch and (ctr < R> do begin
schar î= sstrCctr],
dchar î= dstrCctr],
if schar <> dchar then switch î= false
else ctr++î

end;

tniP î= R-i;

(* hop within same cluster *>
if dchar <> sstrCtmp] then sstrCtmp] î= dchsr

else begin hop outside local cluster *)
switch ;= true.

while switch do begin
if dchar <> sstrCtmp] then switch i = false
else tmp—?

end.

schar î= sstrCtmp]î
sstrCtmp] t= dchar,

while tmp < R-1 do begin
tmpT+ Î
sstrCtmp] î= schar;

end;
end;
distancent; (# count the hops *)

end;
end;

end;

www.manaraa.com

76

Consume: Multi-tasking Consumer

procedure p_cns
procedure v_cns

external ?

const
P
R

= 3î (* number of ports per node *)
= At (* level of recursion *)

var

(* structure
struct Q -C

1 i nk Î
length:
srcCOIR-1];
dstCOlR-l]:

of Gueue elements *)

(* link to next element *)
byte? (* length of a traversal *)
byte? (* address of source node *>
byte? (* address of destination node *)

(* pointers to Queue pointers» in producer's address space *)
theadi
ttaii:
rheadî
rtailÎ
ptr Î
temp Î

Pword
©word
eword
©word

6(3

•C$56E3>?
<$56E5}?
<$56E7>;
<$56E9}?
public?
public?

(* address strings *)
sstrCOîR-lDÎ byte? (* local
dstrCOÎR-mÎ byte? (# local

(* head of task oueue *)
(* tail of task Queue *)
(* head of reply Queue *)
(* tail of reply Queue *)
(* Queue pointer *)
(* temporary pointer *)

copy of src address *)
copy of dst address *)

(* variables» flaës and counters *)
distance! byte? (# current length of traversal *)
I X O S • i/cîï>r-. I X03" o v c > x x o u x c r ^ /

bytei (* temporary counter *)

procedure main public?
begin

loop
get-task? (* try for a Queue element *)
if flag then begin (* true if task is available *)

for x!= 0 to R-1 do begin
sstrCx] î= ptr.srcCx]?
dstrCxj := ptr.dstCxj?

end?
distance î= 0?
consume?
rel_reply?

end?
end?

nr! î

(* copy the addresses *)

(* hop from node to node *)
(* release the answer *)

www.manaraa.com

77

*)
procedure ëet-task; (* âet 3 task element *)
bedin

p-cnsf (* semaphore operation *)
if Gthead <> nil then beëin (* check head of task Queue *)

if ettail = ethead then Gttail î= nil*
ptr î= etheadî
ethead »= ptr»link?
flag î= true;

end
else flag Î- false»
v_cnsî (* reset semaphore *)

end»

procedure rel_reply» (* release the Queue element *)
beain

p_cns»
- ptr,link î= nil»

if Grtail <> nil then begin
temp î= Prtail»
temp.link := ptr»

end »
Grtail î= ptr»
if (?rhead = nil then Grhead : = Grtail»
ptr,length î= distance» (* return the answer *)
v_cns»

end;

procedure cmpstr(ptrl»ptr2»cnt>Î byte» (* compare strings *)
parm

ptrlî ebyte»
ptr2î @byts?
cntî byte»

begin
while cnt > 0 do begin

4 f •;'***> 4'J-*ors *so+iiT^f« ^ 31 c: a
else cnt—»

end »
return true»

end»
(*

www.manaraa.com

78

*)
procedure consumer (* shortest path through Geode *)
var

ctrrtmpi byteî
enabled;switch! byteî
scharfdchar! bate?

begin
enabled t = true»

while enabled do begin (* loop til sstr=dstr *)
if cmpstr<»sstrCOD»•dstrCOD»R) then enabled î= false
else begin

switch J= true;
ctr î= Oî

find the first location where sstr <> dstr *)
while switch and (ctr < R) do begin

schar î= sstrCctr]*
dchar J= dstrCctr])
if schar <> dchar then switch î= false
else ctr++;

end ;

tiTiP î= R-i;

(* hop within same cluster *)
if dchar <> sstrCtmp] then sstrCtmp] i = dchar

else begin (* hop outside local cluster *)
switch := true?

while switch do begin
if dchar <> sstrCtmp] then switch î= false
else tmp—«

end?

schar != sstrCtmp],
sstrCtmp] î= dchar»

while tmp < R-1 do begin
tmp++î
sstrCtmp] := schar?

end»
end »

distancei+î (* count the hops *)
end »

end»
end »

www.manaraa.com

79

APPENDIX C: Z80 UTILITY PROGRAMS

f monitor for secondary processor
pub -boot

-boot: in 3f(0b4h) $ read the semaphore flip/flop
bit 7tb îtest bit 7
Jr 2»_boot îkeep testing until it's set
Id derlOOOh îdst pointer
Id hlrSOOOh îsrc pointer
Id bCf400h fcounter
Idir Îblock move

pause? in 3»(0b4h) îread the semaphore flip/flop
bit 7f3 ftest bit 7
Jr Zfpause îkeep testing until it's set
call lOOOh renter new routine
Jp Oh îâet another one

f start real-time clock
pub _sclk

-sclk: Id 3,36h îcounter 0» mode 3
out (Oefh)fa îset mode
Id arOh fclear A
out <0ech)*3 ylsb
out (Oech),3 îmsb
Id 3,76h rcounter 1» mode 3
out (Oefh>f3 fset mode
xQ 3? Oh rclear A
out <0edh)»3 îlsb
out (Oedh);3 îmsb
ret

r read real-time clock
pub _ rc1k

-reiki Id SfOh îlstch counter 0
out (Oefh)?3 ?set mode
in 5r<0ech> ;lsb
Id (1700h)r3 fmove to memory
in 3;(0ech) îmsb
Id (1701h)f3 îmove to memory
Jp 8h îrest3rt the monitor

www.manaraa.com

80

pub
_p_prd: in

bit
Jr
ret

_p_prd

3»(Of4h)
7,3
2»_p_prd

Îresd the semsphore flip/flop

ftest bit 7
fkeep testing until it's set

pub
.prdî Id

out
ret

_v_prd
3, Oh
(Of4h)T3

îclesr the 3ccumul3tor

» reset the semaphore flip/flop

.p_cns!

pub
in
bit
Jr
ret

_p_cns

3r(0b4h)
7,3
z,_p_cns

Îread the semaphore flip/flop

îtest bit 7
îkeep testing until it's set

pub
.v_cnsî Id

out
ret

_v_cns

3, Oh
(Ob4h),3

Îclear the accumulator
Îreset the semaphore flip/flop

	1982
	A multi-microcomputer intercommunication structure and multi-tasking algorithm
	Barry A. Andrews
	Recommended Citation

	tmp.1415296852.pdf.20mHZ

